Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Covariant Poisson Brackets in Geometric Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a link between the multisymplectic and the covariant phase space approach to geometric field theory by showing how to derive the symplectic form on the latter, as introduced by Crnković-Witten and Zuckerman, from the multisymplectic form. The main result is that the Poisson bracket associated with this symplectic structure, according to the standard rules, is precisely the covariant bracket due to Peierls and DeWitt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crnković, C., Witten, E.: Covariant Description of Canonical Formalism in Geometrical Theories. In: W. Israel, S. Hawking (eds.), Three Hundred Years of Gravitation, Cambridge: Cambridge University Press, 1987, pp. 676–684

  2. Crnković, C.: Symplectic Geometry of Covariant Phase Space. Class. Quantum Grav. 5, 1557–1575 (1988)

    Google Scholar 

  3. Zuckerman, G.: Action Principles and Global Geometry. In: S.-T. Yau (ed.), Mathematical Aspects of String Theory, Singapore: World Scientific, 1987, pp. 259–288

  4. Woodhouse, N.M.J.: Geometric Quantization. 2nd edition. Oxford: Oxford University Press, 1992

  5. De Donder, Th.: Théorie Invariante du Calcul des Variations. Paris: Gauthier-Villars, 1935

  6. Weyl, H.: Geodesic Fields in the Calculus of Variations for Multiple Integrals. Ann. Math. 36, 607–629 (1935)

    Google Scholar 

  7. Kijowski, J.: A Finite-Dimensional Canonical Formalism in the Classical Field Theory. Commun. Math. Phys. 30, 99–128 (1973); Multiphase Spaces and Gauge in the Calculus of Variations. Bull. Acad. Sc. Polon. 22, 1219–1225 (1974)

    Google Scholar 

  8. Kijowski, J., Szczyrba, W.: Multisymplectic Manifolds and the Geometrical Construction of the Poisson Brackets in the Classical Field Theory. In: J.-M. Souriau (ed.), Géometrie Symplectique et Physique Mathématique, Paris: C.N.R.S., 1975, pp. 347–379

  9. Kijowski, J., Szczyrba, W.: A Canonical Structure for Classical Field Theories. Commun. Math. Phys. 46, 183–206 (1976)

    Google Scholar 

  10. Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan Formalism in the Calculus of Variations. Ann. Inst. Fourier 23, 203–267 (1973)

    Google Scholar 

  11. Guillemin, V., Sternberg, S.: Geometric Asymptotics. Providence, RI: AMS, 1977

  12. Garcia, P.L.: The Poincaré-Cartan Invariant in the Calculus of Variations. Symp. Math. 14, 219–246 (1974)

    Google Scholar 

  13. Cariñena, J.F., Crampin, M., Ibort, L.A.: On the Multisymplectic Formalism for First Order Field Theories. Diff. Geom. App. 1, 345–374 (1991)

    Google Scholar 

  14. Gotay, M.J.: A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations I. Covariant Hamiltonian Formalism. In: M. Francaviglia (ed.), Mechanics, Analysis and Geometry: 200 Years After Lagrange, Amsterdam: North Holland, 1991, pp. 203–235

  15. Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory. http://arxiv.org/abs/physics/9801019, 1998

  16. Peierls, R.E.: The Commutation Laws of Relativistic Field Theory. Proc. Roy. Soc. (London) A 214, 143–157 (1952)

    Google Scholar 

  17. DeWitt, B.: Invariant Commutators for the Quantized Gravitational Field. Phys. Rev. Lett. 4, 317–320 (1960)

    Google Scholar 

  18. DeWitt, B.: Dynamical Theory of Groups and Fields. In: B. DeWitt, C. DeWitt (eds.), Relativity, Groups and Topology, 1963 Les Houches Lectures, New York: Gordon and Breach, 1964, pp. 585–820

  19. DeWitt, B.: The Spacetime Approach to Quantum Field Theory. In: B. DeWitt, R. Stora (eds.), Relativity, Groups and Topology II, 1983 Les Houches Lectures, Amsterdam: Elsevier, 1984, pp. 382–738

  20. Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture Notes in Physics 107, Berlin: Springer-Verlag, 1979

  21. Romero, S.V.: Colchete de Poisson Covariante na Teoria Geométrica dos Campos, PhD thesis, IME-USP, June 2001

  22. Abraham, R., Marsden, J.E.: Foundations of Mechanics. 2nd edition, Reading, MA: Benjamin-Cummings, 1978

  23. Arnold, V.: Mathematical Foundations of Classical Mechanics, 2nd edition, Berlin: Springer-Verlag, 1987

  24. Saunders, D.J.: The Geometry of Jet Bundles, Cambridge: Cambridge University Press, 1989

  25. Palais, R.: Foundations of Non-Linear Global Analysis. Reading, MA: Benjamin-Cummings, 1968

  26. Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Berlin: Springer-Verlag, 1993

  27. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic Geometry, Variational Integrators and Nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998)

    Google Scholar 

  28. Wald, R.M.: General Relativity. Chicago, IL: Chicago University Press, 1984

  29. Barnich, G., Henneaux, M., Schomblond, C.: Covariant Description of the Canonical Formalism. Phys. Rev. D 44, R939–R941 (1991)

    Google Scholar 

  30. Christodoulou, D.: The Notion of Hyperbolicity for Systems of Euler-Lagrange Equations. In: B. Fiedler, K. Gröger, J. Sprekels (eds.), Equadiff99 - Proceedings of the International Conference on Differential Equations, Vol. 1, Singapore: World Scientific, 2000, pp. 327–338

  31. Christodoulou, D.: On Hyperbolicity. Contemp. Math. 263, 17–28 (2000)

    Google Scholar 

  32. Christodoulou, D.: The Action Principle and Partial Differential Equations. Princeton, NJ: Princeton University Press, 2000

  33. Kanatchikov, I.: On Field Theoretic Generalizations of a Poisson Algebra. Rep. Math. Phys. 40, 225–234 (1997)

    Google Scholar 

  34. Forger, M. Römer, H.: A Poisson Bracket on Multisymplectic Phase Space. Rep. Math. Phys. 48, 211–218 (2001)

    Google Scholar 

  35. Forger, M., Paufler, C., Römer, H.: The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory. Rev. Math. Phys. 15, 705–744 (2003)

    Google Scholar 

  36. Forger, M., Paufler, C., Römer, H.: Hamiltonian Multivector Fields and Poisson Forms in Multisymplectic Field Theory. Preprint IME-USP RT-MAP-0402, July 2004, http://arxiv.org/abs/math-ph/0407057, 2004

  37. Salles, M.O.: Campos Hamiltonianos e Colchete de Poisson na Teoria Geométrica dos Campos. PhD thesis, IME-USP, June 2004

  38. Lang, S.: Differential Manifolds. 2nd edition, Berlin: Springer-Verlag, 1985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Forger.

Additional information

Communicated by A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forger, M., Romero, S. Covariant Poisson Brackets in Geometric Field Theory. Commun. Math. Phys. 256, 375–410 (2005). https://doi.org/10.1007/s00220-005-1287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1287-8

Keywords

Navigation