Abstract
We establish a link between the multisymplectic and the covariant phase space approach to geometric field theory by showing how to derive the symplectic form on the latter, as introduced by Crnković-Witten and Zuckerman, from the multisymplectic form. The main result is that the Poisson bracket associated with this symplectic structure, according to the standard rules, is precisely the covariant bracket due to Peierls and DeWitt.
Similar content being viewed by others
References
Crnković, C., Witten, E.: Covariant Description of Canonical Formalism in Geometrical Theories. In: W. Israel, S. Hawking (eds.), Three Hundred Years of Gravitation, Cambridge: Cambridge University Press, 1987, pp. 676–684
Crnković, C.: Symplectic Geometry of Covariant Phase Space. Class. Quantum Grav. 5, 1557–1575 (1988)
Zuckerman, G.: Action Principles and Global Geometry. In: S.-T. Yau (ed.), Mathematical Aspects of String Theory, Singapore: World Scientific, 1987, pp. 259–288
Woodhouse, N.M.J.: Geometric Quantization. 2nd edition. Oxford: Oxford University Press, 1992
De Donder, Th.: Théorie Invariante du Calcul des Variations. Paris: Gauthier-Villars, 1935
Weyl, H.: Geodesic Fields in the Calculus of Variations for Multiple Integrals. Ann. Math. 36, 607–629 (1935)
Kijowski, J.: A Finite-Dimensional Canonical Formalism in the Classical Field Theory. Commun. Math. Phys. 30, 99–128 (1973); Multiphase Spaces and Gauge in the Calculus of Variations. Bull. Acad. Sc. Polon. 22, 1219–1225 (1974)
Kijowski, J., Szczyrba, W.: Multisymplectic Manifolds and the Geometrical Construction of the Poisson Brackets in the Classical Field Theory. In: J.-M. Souriau (ed.), Géometrie Symplectique et Physique Mathématique, Paris: C.N.R.S., 1975, pp. 347–379
Kijowski, J., Szczyrba, W.: A Canonical Structure for Classical Field Theories. Commun. Math. Phys. 46, 183–206 (1976)
Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan Formalism in the Calculus of Variations. Ann. Inst. Fourier 23, 203–267 (1973)
Guillemin, V., Sternberg, S.: Geometric Asymptotics. Providence, RI: AMS, 1977
Garcia, P.L.: The Poincaré-Cartan Invariant in the Calculus of Variations. Symp. Math. 14, 219–246 (1974)
Cariñena, J.F., Crampin, M., Ibort, L.A.: On the Multisymplectic Formalism for First Order Field Theories. Diff. Geom. App. 1, 345–374 (1991)
Gotay, M.J.: A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations I. Covariant Hamiltonian Formalism. In: M. Francaviglia (ed.), Mechanics, Analysis and Geometry: 200 Years After Lagrange, Amsterdam: North Holland, 1991, pp. 203–235
Gotay, M.J., Isenberg, J., Marsden, J.E., Montgomery, R.: Momentum Maps and Classical Relativistic Fields. Part I: Covariant Field Theory. http://arxiv.org/abs/physics/9801019, 1998
Peierls, R.E.: The Commutation Laws of Relativistic Field Theory. Proc. Roy. Soc. (London) A 214, 143–157 (1952)
DeWitt, B.: Invariant Commutators for the Quantized Gravitational Field. Phys. Rev. Lett. 4, 317–320 (1960)
DeWitt, B.: Dynamical Theory of Groups and Fields. In: B. DeWitt, C. DeWitt (eds.), Relativity, Groups and Topology, 1963 Les Houches Lectures, New York: Gordon and Breach, 1964, pp. 585–820
DeWitt, B.: The Spacetime Approach to Quantum Field Theory. In: B. DeWitt, R. Stora (eds.), Relativity, Groups and Topology II, 1983 Les Houches Lectures, Amsterdam: Elsevier, 1984, pp. 382–738
Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture Notes in Physics 107, Berlin: Springer-Verlag, 1979
Romero, S.V.: Colchete de Poisson Covariante na Teoria Geométrica dos Campos, PhD thesis, IME-USP, June 2001
Abraham, R., Marsden, J.E.: Foundations of Mechanics. 2nd edition, Reading, MA: Benjamin-Cummings, 1978
Arnold, V.: Mathematical Foundations of Classical Mechanics, 2nd edition, Berlin: Springer-Verlag, 1987
Saunders, D.J.: The Geometry of Jet Bundles, Cambridge: Cambridge University Press, 1989
Palais, R.: Foundations of Non-Linear Global Analysis. Reading, MA: Benjamin-Cummings, 1968
Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Berlin: Springer-Verlag, 1993
Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic Geometry, Variational Integrators and Nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998)
Wald, R.M.: General Relativity. Chicago, IL: Chicago University Press, 1984
Barnich, G., Henneaux, M., Schomblond, C.: Covariant Description of the Canonical Formalism. Phys. Rev. D 44, R939–R941 (1991)
Christodoulou, D.: The Notion of Hyperbolicity for Systems of Euler-Lagrange Equations. In: B. Fiedler, K. Gröger, J. Sprekels (eds.), Equadiff99 - Proceedings of the International Conference on Differential Equations, Vol. 1, Singapore: World Scientific, 2000, pp. 327–338
Christodoulou, D.: On Hyperbolicity. Contemp. Math. 263, 17–28 (2000)
Christodoulou, D.: The Action Principle and Partial Differential Equations. Princeton, NJ: Princeton University Press, 2000
Kanatchikov, I.: On Field Theoretic Generalizations of a Poisson Algebra. Rep. Math. Phys. 40, 225–234 (1997)
Forger, M. Römer, H.: A Poisson Bracket on Multisymplectic Phase Space. Rep. Math. Phys. 48, 211–218 (2001)
Forger, M., Paufler, C., Römer, H.: The Poisson Bracket for Poisson Forms in Multisymplectic Field Theory. Rev. Math. Phys. 15, 705–744 (2003)
Forger, M., Paufler, C., Römer, H.: Hamiltonian Multivector Fields and Poisson Forms in Multisymplectic Field Theory. Preprint IME-USP RT-MAP-0402, July 2004, http://arxiv.org/abs/math-ph/0407057, 2004
Salles, M.O.: Campos Hamiltonianos e Colchete de Poisson na Teoria Geométrica dos Campos. PhD thesis, IME-USP, June 2004
Lang, S.: Differential Manifolds. 2nd edition, Berlin: Springer-Verlag, 1985
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Kupiainen
Rights and permissions
About this article
Cite this article
Forger, M., Romero, S. Covariant Poisson Brackets in Geometric Field Theory. Commun. Math. Phys. 256, 375–410 (2005). https://doi.org/10.1007/s00220-005-1287-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-005-1287-8