Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Parameterized Complexity of Satisfying Almost All Linear Equations over \(\mathbb{F}_{2}\)

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The problem MaxLin2 can be stated as follows. We are given a system S of m equations in variables x 1,…,x n , where each equation \(\sum_{i \in I_{j}}x_{i} = b_{j}\) is assigned a positive integral weight w j and \(b_{j} \in\mathbb{F}_{2}\), I j ⊆{1,2,…,n} for j=1,…,m. We are required to find an assignment of values in \(\mathbb{F}_{2}\) to the variables in order to maximize the total weight of the satisfied equations.

Let W be the total weight of all equations in S. We consider the following parameterized version of MaxLin2: decide whether there is an assignment satisfying equations of total weight at least Wk, where k is a nonnegative parameter. We prove that this parameterized problem is W[1]-hard even if each equation of S has exactly three variables and every variable appears in exactly three equations and, moreover, each weight w j equals 1 and no two equations have the same left-hand side. We show the tightness of this result by proving that if each equation has at most two variables then the parameterized problem is fixed-parameter tractable. We also prove that if no variable appears in more than two equations then we can maximize the total weight of satisfied equations in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. AA stands for Above Average.

  2. For the number of equations only an exponential upper bound was obtained and the existence of a polynomial upper bound remains an open problem [3].

References

  1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50, 118–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crowston, R., Fellows, M., Gutin, G., Jones, M., Rosamond, F., Thomassé, S., Yeo, A.: Simultaneously satisfying linear equations over \(\mathbb {F}_{2}\): MaxLin2 and Max-r-Lin2 parameterized above average. In: Proc. FSTTCS 2011, pp. 229–240 (2011)

    Google Scholar 

  4. Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.: Systems of linear equations over \(\mathbb{F}_{2}\) and problems parameterized above average. In: SWAT 2010. Lect. Notes Comput. Sci., vol. 6139, pp. 164–175 (2010)

    Google Scholar 

  5. Crowston, R., Gutin, G., Jones, M., Raman, V., Saurabh, S.: Parameterized complexity of MaxSat above average. In: Proc. LATIN 2012. Lect. Notes Comput. Sci., vol. 7256, pp. 184–194 (2012)

    Google Scholar 

  6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. In: Proc. IPEC 2011. Lect. Notes Comput. Sci., vol. 7112, pp. 1–12 (2011)

    Google Scholar 

  7. Downey, R.G., Fellows, M.R., Vardy, A., Whittle, G.: The parameterized complexity of some fundamental problems in coding theory. SIAM J. Comput. 29(2), 545–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)

    Article  MATH  Google Scholar 

  9. Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above or below tight bounds. J. Comput. Syst. Sci. 77, 422–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, E.J., Williams, R.: Improved parameterized algorithms for above average constraint satisfaction. In: Proc. IPEC 2011. Lect. Notes Comput. Sci., vol. 7112, pp. 118–131 (2011)

    Google Scholar 

  12. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. In: Proc. SODA 2012, pp. 94–103 (2012)

    Google Scholar 

  13. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. Preprint. arXiv:1203.0833v2 [cs.DS]

  14. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rafiey, A.: Private Communication (2011)

  16. Raman, V., Ramanujan, M.S., Saurabh, S.: Paths, flowers and vertex cover. In: Proc. ESA 2011. Lect. Notes Comput. Sci., vol. 6942, pp. 382–393 (2011)

    Chapter  Google Scholar 

  17. Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gutin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowston, R., Gutin, G., Jones, M. et al. Parameterized Complexity of Satisfying Almost All Linear Equations over \(\mathbb{F}_{2}\) . Theory Comput Syst 52, 719–728 (2013). https://doi.org/10.1007/s00224-012-9415-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9415-2

Keywords

Navigation