Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Hierarchical Diameter-Clustering and the Supplier Problem

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Given a data set in a metric space, we study the problem of hierarchical clustering to minimize the maximum cluster diameter, and the hierarchical k-supplier problem with customers arriving online.

We prove that two previously known algorithms for hierarchical clustering, one (offline) due to Dasgupta and Long and the other (online) due to Charikar, Chekuri, Feder and Motwani, output essentially the same result when points are considered in the same order. We show that the analyses of both algorithms are tight and exhibit a new lower bound for hierarchical clustering. Finally we present the first constant factor approximation algorithm for the online hierarchical k-supplier problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arabie, P., Hubert, L.J., De Soete, G. (eds.): Clustering and Classification. World Scientific, River Edge (1998)

    Google Scholar 

  2. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Online medians via online bribery. Lect. Not. Comput. Sci. 3887, 311–322 (2006). Latin American Theoretical Informatics (2006)

    Article  MathSciNet  Google Scholar 

  4. Dasgupta, S., Long, P.: Performance guarantees for hierarchical clustering. J. Comput. Syst. Sci. 70(4), 555–569 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duda, R.O., Hart, P.E., Sork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  6. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. In: Proceedings of the 17th Annual ACM Symposium on the Theory of Computing, vol. 38, pp. 293–306 (1985)

  7. Hochbaum, D.S.: Various notions of approximations: good, better, best and more. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems. PWS-Kent, Boston (1996)

    Google Scholar 

  8. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10, 180–184 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  10. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Google Scholar 

  11. Lin, G., Nagarajan, C., Rajamaran, R., Williamson, D.P.: A general approach for incremental approximation and hierarchical clustering. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), pp. 1147–1156 (2006)

  12. NSF Workshop Report on Emerging Issues in Aerosol Particle Science and Technology (NAST), UCLA, 2003, Chap. 1, Sect. 18, “Improved and rapid data analysis tools (Chemical Characterization)”. Available at http://www.nano.gov/html/res/NSFAerosolParteport.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Kenyon-Mathieu, C. On Hierarchical Diameter-Clustering and the Supplier Problem. Theory Comput Syst 45, 497–511 (2009). https://doi.org/10.1007/s00224-009-9186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-009-9186-6

Keywords

Navigation