Abstract
Objectives
Addictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes.
Methods and results
Adolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery.
Conclusions
This study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.
Similar content being viewed by others
References
Able JA, Gudelsky GA, Vorhees CV, Williams MT (2006) 3,4-Methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory. Biol Psychiatry 59:1219–1226
Andersen SL, Navalta CP (2004) Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int J Dev Neurosci 22:423–440
Angelucci F, Ricci V, Martinotti G, Palladino I, Spalletta G, Caltagirone C, Bria P (2010) Ecstasy (MDMA)-addicted subjects show increased serum levels of brain-derived neurotrophic factor, independently from a rise of drug-induced psychotic symptoms. Addict Biol 15:365–367
Anneken JH, Gudelsky GA (2012) MDMA produces a delayed and sustained increase in the extracellular concentration of glutamate in the rat hippocampus. Neuropharmacology 63:1022–1027
Arellano JI, Benavides-Piccione R, De Felipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143
Arias-Cavieres A, Rozas C, Reyes-Parada M, Barrera N, Pancetti F, Loyola S et al (2010) MDMA (“ecstasy”) impairs learning in the Morris Water Maze and reduces hippocampal LTP in young rats. Neurosci Lett 469:375–379
Ball KT, Wellman CL, Fortenberry, Rebec GV (2009) Sensitizing regimens of (+/−)3,4-methylenedioxymethamphetamine (ecstasy) elicit enduring and differential structural alterations in the brain motive circuit of the rat. Neuroscience 160:264–274
Battaglia G, Yeh SY, De Souza EB (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29:269–274
Beninger RJ, Gerdjikov T (2004) The role of signaling molecules in reward-related incentive learning. Neurotox Res 6:91–104
Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci 48:29–69
Brenhouse HC, Andersen SL (2011) Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 35:1687–1703
Broadbent NJ, Gaskin S, Squire LR, Clark RE (2009) Object recognition memory and the rodent hippocampus. Learn Mem 17:5–11
Broening HW, Morford LL, Inman-Wood SL, Fukumura M, Vorhees CV (2001) 3,4-Methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci 21:3228–3235
Camarasa J, Marimón JM, Rodrigo T, Escubedo E, Pubill D (2008) Memantine prevents the cognitive impairment induced by 3,4-methylenedioxymethamphetamine in rats. Eur J Pharmacol 589:132–139
Chipana C, Camarasa J, Pubill D, Escubedo E (2006) Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors. Neuropharmacology 51:885–895
Cohen MA, Skelton MR, Schaefer TL, Gudelsky GA, Vorhees CV, Williams MT (2005) Learning and memory after neonatal exposure to 3,4-methylenedioxymethamphetamine (ecstasy) in rats: interaction with exposure in adulthood. Synapse 57:148–159
Colorado RA, Shumake J, Conejo NM, Gonzalez-Pardo H, Gonzalez-Lima F (2006) Effects of maternal separation, early handling, and standard facility rearing on orienting and impulsive behavior of adolescent rat. Behav Process 71:1–58
D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90
Doremus-Fitzwater TL, Spear LP (2010) Age-related differences in amphetamine sensitization: effects of prior drug or stress history on stimulant sensitization in juvenile and adult rats. Pharmacol Biochem Behav 9:198–205
Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 11:1481–1489
Fole A, González-Martín C, Huarte C, Alguacil LF, Ambrosio E, Del Olmo N (2011) Effects of chronic cocaine administration on spatial learning and hippocampal spine density in two genetically different strains of rats. Neurobiol Learn Mem 95:491–497
Garcia-Ratés S, Camarasa J, Sánchez-García AI, Gandía L, Escubedo E, Pubill D (2010) The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation. Toxicol Appl Pharmacol 244:344–353
Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508
Hemmerle AM, Dickerson JW, Herring NR, Schaefer TL, Vorhees CV, Williams MT et al (2012) (±)3,4-Methylenedioxymethamphetamine (“ecstasy”) treatment modulates expression of neurotrophins and their receptors in multiple regions of adult rat brain. J Comp Neurol 520:2459–2474
Hongpaisan J, Alkon DL (2007) A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc Natl Acad Sci U S A 104:19571–19576
Hongpaisan J, Xu C, Sen A, Nelson TJ, Alkon DL (2013) PKC activation during training restores mushroom spine synapses and memory in the aged rat. Neurobiol Dis 55:44–62
Johansen PØ, Krebs TS (2009) How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. J Psychopharmacol 23:389–391
Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781
Kirov SA, Harris KM (1999) Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated. Nat Neurosci 2:878–883
Kolta MG, Scalzo FM, Ali SF, Holson RR (1990) Ontogeny of the enhanced behavioral response to amphetamine in amphetamine-pretreated rat. Psychopharmacology (Berlin) 3:377–382
Kramer HK, Poblete JC, Azmitia EC (1997) Activation of protein kinase C (PKC) by 3,4-methylenedioxymethamphetamine (MDMA) occurs through the stimulation of serotonin receptors and transporter. Neuropsychopharmacology 17:117–129
Leri F, Nahas E, Henderson K, Limebeer CL, Parker LA, White NM (2013) Effects of post-training heroin and d-amphetamine on consolidation of win-stay learning and fear conditioning. J Psychopharmacol 2:292–301
Leuner B, Falduto J, Shors TJ (2003) Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci 23:659–665
McMillen BA, Means LW, Matthews JN (1998) Comparison of the alcohol-preferring P rat to the Wistar rat in behavioral tests of impulsivity and anxiety. Physiol Behav 63:371–375
Mechan AO, Moran PM, Elliott M, Young AJ, Joseph MH, Green R (2002) A study of the effect of a single neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; “ecstasy”) on the subsequent long-term behavior of rats in the plus maze and open field. Psychopharmacology (Berlin) 159:167–175
Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of ±3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25:439–452
Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Martin SF, Yazar-Klosinski B et al (2013) Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. J Psychopharmacol 27:28–39
Moenk MD, Matuszewich L (2012) Juvenile but not adult methamphetamine exposure improves performance in the Morris Water Maze in male rats. Int J Dev Neurosci 30:325–331
Morini R, Mlinar B, Baccini G, Corradetti R (2011) Enhanced hippocampal long-term potentiation following repeated MDMA treatment in Dark-Agouti rats. Eur Neuropsychopharmacol 21:80–91
Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A 91:12673–12675
Nair SG, Gudelsky GA (2006) 3,4-Methylenedioxymethamphetamine enhances the release of acetylcholine in the prefrontal cortex and dorsal hippocampus of the rat. Psychopharmacology (Berlin) 184:182–189
O’Loinsigh ED, Boland G, Kelly JP, O’Boyle KM (2001) Behavioral, hyperthermic and neurotoxic effects of 3,4-methylenedioxymethamphetamine analogues in the Wistar rat. Prog Neuropsychopharmacol Biol Psychiatry 25:621–638
Porsolt RD, Bertin A, Jalfre M (1978) “Behavioral despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51:291–294
Preissmann D, Leuba G, Savary C, Vernay A, Kraftsik R, Riederer IM et al (2012) Increased postsynaptic density protein-95 expression in the frontal cortex of aged cognitively impaired rats. Exp Biol Med 237:1331–1340
Pubill D, Canudas AM, Pallas M, Camins A, Camarasa J, Escubedo E (2003) Different glial response to methamphetamine- and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol 367:490–499
Robinson TE, Kolb B (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17:8491–8497
Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 1:1598–1604
Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47:33–46
Rodsiri R, Spicer C, Green AR, Marsden CA, Fone KC (2011) Acute concomitant effects of MDMA binge dosing on extracellular 5-HT, locomotion and body temperature and the long-term effect on novel object discrimination in rats. Psychopharmacology (Berlin) 213:365–376
Sanchez V, O’Shea E, Saadat KS, Elliott JM, Colado MI, Green AR (2004) Effect of repeated (‘binge’) dosing of MDMA to rats housed at normal and high temperature on neurotoxic damage to cerebral 5-HT and dopamine neurons. J Psychopharmacol 18:412–416
Serres F, Carney SL (2006) Nicotine regulates SH-SY5Y neuroblastoma cell proliferation through the release of brain-derived neurotrophic factor. Brain Res 1101:36–42
Simon NW, Setlow B (2006) Post-training amphetamine administration enhances memory consolidation in appetitive Pavlovian conditioning: implications for drug addiction. Neurobiol Learn Mem 86:305–310
Skelton MR, Able JA, Grace CE, Herring NR, Schaefer TL, Gudelsky GA et al (2008) (+/)-3,4-Methylenedioxymethamphetamine treatment in adult rats impairs path integration learning: a comparison of single vs once per week treatment for 5 weeks. Neuropharmacology 55:1121–1130
Skelton MR, Graham DL, Schaefer TL, Grace CE, Braun AA, Burns LN et al (2012) Distinct periods of developmental sensitivity to the effects of 3,4-(±)-methylenedioxymethamphetamine (MDMA) on behaviour and monoamines in rats. Int J Neuropsychopharmacol 15:811–824
Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 7:1009–1014
Sprague JE, Preston AS, Leifheit M, Woodside B (2003) Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning. Physiol Behav 79:281–287
Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319:1683–1687
Thompson VB, Heiman J, Chambers JB, Benoit SC, Buesing WR, Norman MK et al (2009) Long-term behavioral consequences of prenatal MDMA exposure. Physiol Behav 96:593–601
Tirelli E, Laviola G, Adriani W (2003) Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci Biobehav Rev 27:163–178
Vorhees CV, Schaefer TL, Skelton MR, Grace CE, Herring NR, Williams MT (2009) (+/−)3,4-Methylenedioxymethamphetamine (MDMA) dose-dependently impairs spatial learning in the Morris water maze after exposure of rats to different five-day intervals from birth to postnatal day twenty. Dev Neurosci 31:107–120
Vorhees CV, He E, Skelton MR, Graham DL, Schaefer TL, Grace CE et al (2011) Comparison of (+)-methamphetamine, ± − methylenedioxymethamphetamine, (+)-amphetamine and ± −fenfluramine in rats on egocentric learning in the Cincinnati water maze. Synapse 65:368–378
Wiig KA, Whitlock JR, Epstein MH, Carpenter RL, Bear MF (2009) The levo enantiomer of amphetamine increases memory consolidation and gene expression in the hippocampus without producing locomotor stimulation. Neurobiol Learn Mem 92:106–113
Acknowledgments
The authors acknowledge the Language Advisory Service of the University of Barcelona for revising the language of the manuscript. S. Abad is a fellow of Institut de Biomedicina (IBUB, University of Barcelona). This work was supported by grants from Spanish Ministerio de Ciencia e Innovación (SAF2010-15948, SAF2011-23631 and SAF2012-39852-C02-01) and from the Generalitat de Catalunya (SGR0977).
Conflict of Interest
The authors have no financial or non-financial competing interests in relation to the work described here.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abad, S., Fole, A., del Olmo, N. et al. MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density. Psychopharmacology 231, 863–874 (2014). https://doi.org/10.1007/s00213-013-3304-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-013-3304-5