Abstract
In this article, the construction of nested bases approximations to discretizations of integral operators with oscillatory kernels is presented. The new method has log-linear complexity and generalizes the adaptive cross approximation method to high-frequency problems. It allows for a continuous and numerically stable transition from low to high frequencies.
Similar content being viewed by others
References
Alpert, B.K., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Comput. 14, 159–184 (1993)
Amini, S., Profit, A.: Multi-level fast multipole solution of the scattering problem. Eng. Anal. Bound. Elements 27(5), 547–654 (2003)
Anderson, C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)
Banjai, L., Hackbusch, W.: Hierarchical matrix techniques for low- and high-frequency Helmholtz problems. IMA J. Numer. Anal. 28(1), 46–79 (2008). doi:10.1093/imanum/drm001
Barnes, J., Hut, P.: A hierarchical \(\cal O({N}\log {N})\) force calculation algorithm. Nature 324, 446–449 (1986)
Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)
Bebendorf, M.: Hierarchical matrices: a means to efficiently solve elliptic boundary value problems. In: Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63. Springer, Berlin (2008). ISBN 978-3-540-77146-3
Bebendorf, M., Venn, R.: Constructing nested bases approximations from the entries of non-local operators. Numer. Math. 121(4), 609–635 (2012)
Börm, S.: \({\cal H}^{2}\)-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)
Börm, S., Löhndorf, M., Melenk, J.M.: Approximation of integral operators by variable-order interpolation. Numer. Math. 99(4), 605–643 (2005)
Brakhage, H., Werner, P.: Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965)
Brandt, A.: Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Comput. Phys. Commun. 65, 24–38 (1991)
Buffa, A., Hiptmair, R.: A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42(2), 621–640 (2003)
Burton, A.J., Miller, G.F.: The application of integral equation methods to the numerical solution of boundary value problems. Proc. R. Soc. Lond. A232, 201–210 (1971)
Candès, E., Demanet, L., Ying, L.: A fast butterfly algorithm for the computation of Fourier integral operators. Multiscale Model. Simul. 7(4), 1727–1750 (2009). doi:10.1137/080734339
Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica 21, 89–305 (2012)
Cheng, H., Crutchfield, W.Y., Gimbutas, Z., Greengard, L.F., Ethridge, J.F., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys. 216(1), 300–325 (2006). doi:10.1016/j.jcp.2005.12.001
Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000)
Engquist, B., Ying, L.: Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput. 29(4), 1710–1737 (2007, electronic)
Engquist, B., Ying, L.: A fast directional algorithm for high frequency acoustic scattering in two dimensions. Commun. Math. Sci. 7(2), 327–345 (2009)
Francia, G.T.D.: Degrees of freedom of an image. J. Opt. Soc. Am. 59(7), 799–803 (1969)
Giebermann, K.: Schnelle Summationsverfahren zur numerischen Lösung von Integralgleichungen für Streuprobleme im \(\mathbb{R}^3\). Ph.D. thesis, Universität Karlsruhe (1997)
Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal H}\)-matrices. Computing 70, 295–334 (2003)
Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge (1988)
Greengard, L.F., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)
Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica, vol. 6, pp. 229–269. Cambridge University Press, Cambridge (1997)
Hackbusch, W.: A sparse matrix arithmetic based on \(\cal H\)-matrices. Part I: introduction to \(\cal H\)-matrices. Computing 62(2), 89–108 (1999)
Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive \({\cal H}^{2}\)-matrices. Computing 69(1), 1–35 (2002)
Hackbusch, W., Khoromskij, B.N.: A sparse \(\cal H\)-matrix arithmetic: general complexity estimates. J. Comput. Appl. Math. 125(1–2), 479–501 (2000). Numerical analysis 2000, vol. VI, Ordinary differential equations and integral equations
Hackbusch, W., Khoromskij, B.N.: A sparse \(\cal H\)-matrix arithmetic. Part II: application to multi-dimensional problems. Computing 64(1), 21–47 (2000)
Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\cal H}^{2}\)-matrices. In: Bungartz, H.J., Hoppe, R.H.W., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)
Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)
Messner, M., Schanz, M., Darve, E.: Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation. J. Comput. Phys. 231, 1175–1196 (2012)
Michielssen, E., Boag, A.: A multilevel matrix decomposition for analyzing scattering from large structures. IEEE Trans. Antennas Propag. 44, 1086–1093 (1996)
Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)
Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86(2), 414–439 (1990)
Rokhlin, V.: Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl. Comput. Harmon. Anal. 1(1), 82–93 (1993)
Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comput. 64(211), 1147–1170 (1995)
Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1–2), 47–57 (1998). Toeplitz matrices: structures, algorithms and applications (Cortona, 1996)
Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the DFG project BE2626/3-1.
Rights and permissions
About this article
Cite this article
Bebendorf, M., Kuske, C. & Venn, R. Wideband nested cross approximation for Helmholtz problems. Numer. Math. 130, 1–34 (2015). https://doi.org/10.1007/s00211-014-0656-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-014-0656-7