Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-revolution composition methods for highly oscillatory differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We introduce a new class of multi-revolution composition methods for the approximation of the \(N\)th-iterate of a given near-identity map. When applied to the numerical integration of highly oscillatory systems of differential equations, the technique benefits from the properties of standard composition methods: it is intrinsically geometric and well-suited for Hamiltonian or divergence-free equations for instance. We prove error estimates with error constants that are independent of the oscillatory frequency. Numerical experiments, in particular for the nonlinear Schrödinger equation, illustrate the theoretical results, as well as the efficiency and versatility of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Notice that \(d_1(y) = \varTheta _0(y)\).

  2. By convention, \(|\emptyset | = \Vert \emptyset \Vert = 0\).

  3. Notice that \(e_\infty (\tau )=0\) if at least one of its labels is different from \(1\).

References

  1. Abdulle, A., Weinan, E., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Calvo, M., Jay, L.O., Montijano, J.I., Rández, L.: Approximate compositions of a near identity map by multi-revolution Runge–Kutta methods. Numer. Math. 97(4), 635–666 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calvo, M., Montijano, J.I., Rández, L.: A family of explicit multirevolution Runge–Kutta methods of order five. In: Analytic and Numerical Techniques in Orbital Dynamics (Spanish) (Albarracín, 2002), Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, vol. 22, pp. 45–54. Acad. Cienc. Exact. Fís. Quím. Nat. Zaragoza, Zaragoza (2003)

  4. Calvo, M., Montijano, J.I., Rández, L.: On explicit multi-revolution Runge–Kutta schemes. Adv. Comput. Math. 26(1–3), 105–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calvo, M.P., Chartier, P., Murua, A., Sanz-Serna, J.M.: Numerical stroboscopic averaging for ODEs and DAEs. Appl. Numer. Math. 61(10), 1077–1095 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT 49(3), 487–508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castella, F., Chartier, P., Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear Schrödinger equation. Technical report, Sept (2012)

  8. Chartier, P., Mehats, F., Thalhammer, M.: Convergence analysis of multi-revolution composition time-splitting pseudo-spectral methods for Schrödinger equations. Part I. the linear case (2013, in preparation)

  9. Chartier, P., Murua, A., Sanz-Serna, J.M.: Higher-order averaging, formal series and numerical integration I: B-series. Found. Comput. Math. 10(6), 695–727 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chartier, P., Murua, A., Sanz-Serna, J.M.: A formal series approach to averaging: exponentially small error estimates. Discrete Contin. Dyn. Syst. 32(9), 3009–3027 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci., 1(1):87–132 (2003)

    Google Scholar 

  12. E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)

    Google Scholar 

  13. Fermi, E., Pasta, J., Ulam, S.: Studies of non linear problems. Technical Report LA-1940, Los Alamos, 1955. Later published in E. Fermi: Collected Papers (Chicago 1965), and Lect. Appl. Math. 15, 143 (1974)

  14. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grébert, B., Villegas-Blas, C.: On the energy exchange between resonant modes in nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(1), 127–134 (2011)

    MATH  Google Scholar 

  16. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. In: Structure-preserving algorithms for ordinary differential equations. Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2010). Reprint of the second edition (2006)

  17. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT 49(3), 527–542 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kirchgraber, U.: An ODE-solver based on the method of averaging. Numer. Math. 53(6), 621–652 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31(1), 334–368 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. McLachlan, R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Melendo, B., Palacios, M.: A new approach to the construction of multirevolution methods and their implementation. Appl. Numer. Math. 23(2), 259–274 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Murua, A., Sanz-Serna, J.M.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. Ser. A 357, 1079–1100 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numer. 6, 437–483 (1997)

    Article  MathSciNet  Google Scholar 

  26. Sanders, J., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  27. Vilmart, G.: Weak second order multi-revolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise (2013, submitted)

Download references

Acknowledgments

JM and AM were partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2010-18246-C03-03 (co-financed by FEDER Funds of the European Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Vilmart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chartier, P., Makazaga, J., Murua, A. et al. Multi-revolution composition methods for highly oscillatory differential equations. Numer. Math. 128, 167–192 (2014). https://doi.org/10.1007/s00211-013-0602-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0602-0

Mathematics Subject Classification (2000)

Navigation