Abstract
We prove the convergence of a non-monotonous scheme for a one-dimensional first order Hamilton–Jacobi–Bellman equation of the form v t + max α (f(x, α)v x ) = 0, v(0, x) = v 0(x). The scheme is related to the HJB-UltraBee scheme suggested in Bokanowski and Zidani (J Sci Comput 30(1):1–33, 2007). We show for general discontinuous initial data a first-order convergence of the scheme, in L 1-norm, towards the viscosity solution. We also illustrate the non-diffusive behavior of the scheme on several numerical examples.
Similar content being viewed by others
References
Agbrall R., Augoula S.: High order numerical discretization for Hamilton-Jacobi equations on triangular meshes. J. Sci. Comput. 15(2), 197–229 (2000)
Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. In: Systems and Control: Foundations and Applications. Birkhäuser, Boston (1997)
Barles G.: Solutions de viscosité des équations de Hamilton-Jacobi, volume 17 of Mathématiques & Applications (Berlin). Springer-Verlag, Paris (1994)
Barles G., Souganidis P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)
Bokanowski, O., Forcadel, N., Zidani, H.: L 1-error estimates for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1. Math. Comput. (to appear) (2009)
Bokanowski O., Martin S., Munos R., Zidani H.: An anti-diffusive scheme for viability problems. Appl. Numer. Math. 56(9), 1135–1254 (2006)
Bokanowski O., Megdich N., Zidani H.: An adaptative antidissipative method for optimal control problems. Arima 5, 256–271 (2006)
Bokanowski O., Zidani H.: Anti-diffusive schemes for linear advection and application to Hamilton-Jacobi-Bellman equations. J. Sci. Comput. 30(1), 1–33 (2007)
Cockburn B., Gremaud P.-A.: A priori error estimates for numerical methods for scalar conservation laws. II. Flux-splitting monotone schemes on irregular Cartesian grids. Math. Comput. 66(218), 547–572 (1997)
Cockburn, B., Gremaud, P.-A., Yang, J.X.: A priori error estimates for numerical methods for scalar conservation laws. III. Multidimensional flux-splitting monotone schemes on non-Cartesian grids. SIAM J. Numer. Anal. 35(5), 1775–1803 (electronic) (1998)
Crandall M.G., Lions P.-L.: Two approximations of solutions of Hamilton Jacobi equations. Math. Comput. 43, 1–19 (1984)
Desprès, B.: Lax theorem and finite volume schemes. Math. Comput. 73(247), 1203–1234 (electronic) (2004)
Desprès B., Lagoutière F.: Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16, 479–524 (2001)
Falcone, M.: A numerical approach to the infinite horizon problem. Appl. Math. Optim. 15(13), 213–214 (1987), and 23 (1991)
Falcone M., Ferretti R.: Semi-lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175, 559–575 (2002)
Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws. SMAI. Ellipses (1991)
Lagoutiere F.: A non-dissipative entropic scheme for convex scalar equations via discontinuous cell reconstruction. C. R. Acad. Sci. 338(7), 549–554 (2004)
Lions P.L., Souganidis P.E.: Convergence of muscle and filtered schemes for scalar conservation laws and Hamilton Jacobi equations. Numer. Math. 69, 441–470 (1995)
Osher S., Shu C.-W.: High essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)
Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)
Saint-Pierre P.: Approximation of viability kernel. Appl. Math. Optim. 29, 187–209 (1994)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bokanowski, O., Megdich, N. & Zidani, H. Convergence of a non-monotone scheme for Hamilton–Jacobi–Bellman equations with discontinous initial data. Numer. Math. 115, 1–44 (2010). https://doi.org/10.1007/s00211-009-0271-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-009-0271-1