Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stability of the 8-tetrahedra shortest-interior-edge partitioning method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a tetrahedron partitioning method, known in the literature as the 8-tetrahedra shortest-interior-edge partition. For this method, which is a variant of Freudenthal’s algorithm in three space dimensions, we prove that the infinite series of refined meshes (for any given initial mesh) is stable in the sense that the degree of degeneracy of the cells remains bounded. We give an explicit estimate in terms of a standard shape quality measure introduced by Liu and Joe. Furthermore, we show that our estimate is sharp. The estimate also holds for Freudenthal’s algorithm (in three space dimensions) provided that it is initialized appropriately. Numerical experiments confirm our result as well as its sharpness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R., Sherman, A., Weiser, A.: Refinement algorithms and data structures for regular local mesh refinement. In: Stepleman, R. (ed.) Scientific Computing, pp. 3–17. North-Holland, Amsterdam (1983)

  2. Bey, J.: Tetrahedral grid refinement. Computing 55, 355–378 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bey, J.: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of congruence classes. Numerische Mathematik 85, 1–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. 43(3), 580–582 (1942)

    Article  MathSciNet  Google Scholar 

  5. Groß, S., Reusken, A.: Parallel multilevel tetrahedral grid refinement. SIAM J. Sci. Comput. 26(4), 1261–1288 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3–4), 237–254 (2006). doi:10.1007/s00366-006-0049-3

    Article  Google Scholar 

  7. Liu, A., Joe, B.: On the shape of tetrahedra from bisection. Math. Comp. 63, 141–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, A., Joe, B.: Relationship between tetrahedron shape measures. BIT 34, 268–287 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans Math Softw 15(4), 326–347 (1989)

    Article  MATH  Google Scholar 

  10. Ohlberger, M., Rumpf, M.: Adaptive projection operators in multiresolutional scientific visualization. IEEE Trans Vis Comput Graph 4(4), 344–364 (1998)

    Article  Google Scholar 

  11. Plaza, A.: The eight-tetrehedra longest-edge partition and Kuhn triangulations. Comput. Math. Appl. 54, 427–433 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Plaza, A., Padrón, M.A., Suárez, J.P.: Non-degeneracy study of the 8-tetrehedra longest-edge partition. Appl. Numer. Math. 55, 458–472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rivara, M.C.: Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal. 21(3), 604–613 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rivara, M.C., Levin, C.: A 3-D refinement algorithm suitable for adaptive and multi-grid techniques. Comm. Appl. Numer. Methods 8, 281–290 (1992)

    Article  MATH  Google Scholar 

  15. Xu, J., Zikatanov, L.: A monotone finite element scheme for convection-diffusion equations. Math. Comp. 68(228), 1429–1446 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, S.: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Math. 21(3), 541–556 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Kröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, T., Preusser, T. Stability of the 8-tetrahedra shortest-interior-edge partitioning method. Numer. Math. 109, 435–457 (2008). https://doi.org/10.1007/s00211-008-0148-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0148-8

Mathematics Subject Classification (2000)

Navigation