Abstract
In numerical computations the question how much does a function change under perturbations of its arguments is of central importance. In this work, we investigate sensitivity of Gauss–Christoffel quadrature with respect to small perturbations of the distribution function. In numerical quadrature, a definite integral is approximated by a finite sum of functional values evaluated at given quadrature nodes and multiplied by given weights. Consider a sufficiently smooth integrated function uncorrelated with the perturbation of the distribution function. Then it seems natural that given the same number of function evaluations, the difference between the quadrature approximations is of the same order as the difference between the (original and perturbed) approximated integrals. That is perhaps one of the reasons why, to our knowledge, the sensitivity question has not been formulated and addressed in the literature, though several other sensitivity problems, motivated, in particular, by computation of the quadrature nodes and weights from moments, have been thoroughly studied by many authors. We survey existing particular results and show that even a small perturbation of a distribution function can cause large differences in Gauss–Christoffel quadrature estimates. We then discuss conditions under which the Gauss–Christoffel quadrature is insensitive under perturbation of the distribution function, present illustrative examples, and relate our observations to known conjectures on some sensitivity problems.
Similar content being viewed by others
References
Beckermann B., Bourreau E. (1998). How to choose modified moments?. J. Comput. Appl. Math. 98(1): 81–98
Boley D., Golub G.H. (1987). A survey of matrix inverse eigenvalue problems. Inverse Probl 3(41): 595–622
de Boor C., Golub G.H. (1978). The numerically stable reconstruction of a Jacobi matrix from spectral data. Linear Algebra Appl. 21(3): 245–260
Carpraux J.F., Godunov S.K., Kuznetsov S.V. (1996). Condition number of the Krylov bases and subspaces. Linear Algebra Appl. 248: 137–160
Dahlquist, G., Golub, G.H., Nash, S.G.: Bounds for the error in linear systems. In: Semi-infinite programming (Proc. Workshop, Bad Honnef, 1978). Lecture Notes in Control and Information Sci., vol. 15, pp. 154–172. Springer, Berlin (1979)
Davis, P.J., Rabinowitz, P.: Methods of numerical integration, 2nd edn. Computer Science and Applied Mathematics. Academic, Orlando (1984)
Demmel J., Kahan W. (1990). Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Comput. 11(5): 873–912
Dhillon, I.S.: A new O(n 2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem. PhD Thesis, University of California, Berkeley (1997)
Dhillon I.S., Parlett B.N. (2003). Orthogonal eigenvectors and relative gaps. SIAM J. Matrix Anal. Appl. (electronic) 25(3): 858–899
Dhillon I.S., Parlett B.N. (2004). Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387: 1–28
Druskin V., Borcea L., Knizhnerman L. (2005). On the sensitivity of Lanczos recursions to the spectrum. Linear Algebra Appl. 396: 103–125
Elhay S., Golub G.H., Kautsky J. (1991). Updating and downdating of orthogonal polynomials with data fitting applications. SIAM J. Matrix Anal. Appl. 12(2): 327–353
Elhay S., Golub G.H., Kautsky J. (1992). Jacobi matrices for sums of weight functions. BIT 32(1): 143–166
Fischer H.J. (1998). On generating orthogonal polynomials for discrete measures. Z. Anal. Anwendungen 17(1): 183–205
Gautschi W. (1968). Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22: 251–270
Gautschi W. (1970). On the construction of Gaussian quadrature rules from modified moments. Math. Comp. 24: 245–260
Gautschi, W.: Questions on numerical condition related to polynomials. In: Recent Advances in Numerical Analysis (Madison, 1978), pp. 45–72. Academic, New York (1978)
Gautschi, W.: A survey of Gauss–Christoffel quadrature formulae. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel: The Influence of His Work on Mathematics and Physics, pp. 72–147. Birkhäuser, Basel (1981)
Gautschi W. (1982). On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput. 3(3): 289–317
Gautschi W. (1993). Is the recurrence relation for orthogonal polynomials always stable?. BIT 33(2): 277–284
Gautschi, W.: Numerical analysis: an introduction. Birkhäuser Boston Inc., Boston (1997)
Gautschi W. (2002). The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub. Electron. Trans. Numer. Anal. (electronic) 13: 119–147
Gautschi W. (2004). Orthogonal polynomials: computation and approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York
Gautschi W. (2005). Orthogonal polynomials (in Matlab). J. Comput. Appl. Math. 178(1–2): 215–234
Gautschi W., Varga R.S. (1983). Error bounds for Gaussian quadrature of analytic functions. SIAM J. Numer. Anal. 20(6): 1170–1186
Golub, G.H.: Matrix computation and the theory of moments. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 1440–1448. Birkhäuser, Basel (1995)
Golub, G.H., Van Loan, C.F.: Matrix computations, Johns Hopkins Series in the Mathematical Sciences, vol. 3, 2nd edn. Johns Hopkins University Press, Baltimore (1989)
Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23 (1969), 221-230; addendum, ibid. 23(106, loose microfiche suppl), A1–A10 (1969)
Gragg W.B., Harrod W.J. (1984). The numerically stable reconstruction of Jacobi matrices from spectral data. Numer. Math. 44(3): 317–335
Grosser B., Lang B. (2005). On symmetric eigenproblems induced by the bidiagonal SVD. SIAM J. Matrix Anal. Appl. (electronic) 26(3): 599–620
Hestenes M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49, 409–436 (1953) (1952)
Isaacson E., Keller H.B. (1966). Analysis of numerical methods. Wiley, New York
Kautský J., Golub G.H. (1983). On the calculation of Jacobi matrices. Linear Algebra Appl. 52/53: 439–455
Kuznetsov S.V. (1997). Perturbation bounds of the Krylov bases and associated Hessenberg forms. Linear Algebra Appl. 265: 1–28
Lanczos, C.: Applied analysis. Prentice Hall, Inc., Englewood Cliffs (1956)
Laurie D.P. (1999). Accurate recovery of recursion coefficients from Gaussian quadrature formulas. J. Comput. Appl. Math. 112(1–2): 165–180
Laurie, D.P.: Questions related to Gaussian quadrature formulas and two-term recursions. In: Applications and computation of orthogonal polynomials (Oberwolfach, 1998). Int. Ser. Numer. Math. 131, 133–144 (1999)
Laurie D.P. (2001). Computation of Gauss-type quadrature formulas. J. Comput. Appl. Math. 127(1–2): 201–217
Li R.C. (1997). Relative perturbation theory. III. More bounds on eigenvalue variation. Linear Algebra Appl. 266: 337–345
Meurant G., Strakoš Z. (2006). Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15: 471–542
Milne-Thomson L.M. (1960). The Calculus of Finite Differences. MacMillan & Co., New York
Natterer, F.: Discrete Gel’fand–Levitan theory, www page of the author (1999)
Nevai P.G. (1979). Orthogonal polynomials. Mem. Am. Math. Soc. 18(213): v+185
O’Leary D.P., Stewart G.W., Vandergraft J.S. (1979). Estimating the largest eigenvalue of a positive definite matrix. Math. Comp. 33(148): 1289–1292
Paige, C.C., Van Dooren, P.: Sensitivity analysis of the Lanczos reduction. Numer. Linear Algebra Appl. 6(1), 29–50 (1999). Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997)
Parlett, B.N., Dhillon, I.S.: Relatively robust representations of symmetric tridiagonals. In: Proceedings of the International Workshop on Accurate Solution of Eigenvalue Problems (University Park, PA, 1998), vol. 309, pp. 121–151 (2000)
Parlett B.N., Simon H., Stringer G. (1982). On estimating the largest eigenvalue with the Lanczos algorithm. Math. Comp. 38: 153–165
Reichel L. (1991). Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation. SIAM J. Matrix Anal. Appl. 12(3): 552–564
van der Sluis A., van der Vorst H. (1986). The rate of convergence of conjugate gradients. Numer. Math. 48: 543–560
van der Sluis A., van der Vorst H. (1987). The convergence behavior of Ritz values in the presence of close eigenvalues. Linear Algebra Appl. 88: 651–694
Strakoš Z. (1991). On the real convergence rate of the conjugate gradient method. Linear Algebra Appl. 154–156: 535–549
Strakoš Z., Tichý P. (2002). On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. (electronic) 13: 56–80
Stroud, A.H., Secrest, D.: Gaussian quadrature formulas. Prentice-Hall Inc., Englewood Cliffs (1966)
Swarztrauber P.N. (2002). On computing the points and weights for Gauss-Legendre quadrature. SIAM J. Sci. Comput. (electronic) 24(3): 945–954
Szegö G. (1939). Orthogonal Polynomials. Colloquium Publications, vol. XXIII. American Mathematical Society, New York
Uvarov V.B. (1969). The connection between systems of polynomials that are orthogonal with respect to different distribution functions. ŽVyčisl. Mat. i Mat. Fiz. 9: 1253–1262
Vorobyev, Y.V.: Methods of moments in applied mathematics. Translated from the Russian by Bernard Seckler. Gordon and Breach Science Publishers, New York (1965)
Willems P., Lang B., Vömel C. (2006). Computing the bidiagonal SVD using multiple relatively robust representations. SIAM J. Matrix Anal. Appl. 28(4): 907–926
Xu S.F. (1993). A stability analysis of the Jacobi matrix inverse eigenvalue problem. BIT 33(4): 695–702
Author information
Authors and Affiliations
Corresponding author
Additional information
The work of the first author was supported by the National Science Foundation under Grants CCR-0204084 and CCF-0514213. The work of the other two authors was supported by the Program Information Society under project 1ET400300415 and by the Institutional Research Plan AV0Z100300504.
P. Tichý in the years 2003–2006 on leave at the Institute of Mathematics, TU Berlin, Germany.
Rights and permissions
About this article
Cite this article
O’Leary, D.P., Strakoš, Z. & Tichý, P. On sensitivity of Gauss–Christoffel quadrature. Numer. Math. 107, 147–174 (2007). https://doi.org/10.1007/s00211-007-0078-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-007-0078-x