Summary.
The convergence of the conjugate gradient method is studied for preconditioned linear operator equations with nonsymmetric normal operators, with focus on elliptic convection-diffusion operators in Sobolev space. Superlinear convergence is proved first for equations whose preconditioned form is a compact perturbation of the identity in a Hilbert space. Then the same convergence result is verified for elliptic convection-diffusion equations using different preconditioning operators. The convergence factor involves the eigenvalues of the corresponding operators, for which an estimate is also given. The above results enable us to verify the mesh independence of the superlinear convergence estimates for suitable finite element discretizations of the convection-diffusion problems.
Similar content being viewed by others
References
Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)
Axelsson, O.: A generalized conjugate gradient least square method. Numer. Math. 51, 209–227 (1987)
Axelsson, O.: Iterative Solution Methods. Cambridge: Cambridge University Press, 1994
Axelsson, O., Barker, V.A.: Finite Element Solution of Boundary Value Problems. Academic Press, 1984
Axelsson, O., Gololobov, S.V.: A combined method of local Green’s functions and central difference method for singularly perturbed convection-diffusion problems. J. Comput. Appl. Math. 161(2), 245–257 (2003)
Axelsson, O., Kaporin, I.: On the sublinear and superlinear rate of convergence of conjugate gradient methods. Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999). Numer. Algorithms 25(1–4), 1–22 (2000)
Axelsson, O., Karátson J.: On the rate of convergence of the conjugate gradient method for linear operators in Hilbert space. Numer. Funct. Anal. 23(3–4), 285–302 (2002)
Axelsson, O., Karátson J.: Symmetric part preconditioning for the conjugate gradient method in Hilbert space. Numer. Funct. Anal. 24(5–6), 455–474 (2003)
Axelsson, O., Lindskog, G.: On the rate of convergence of the preconditioned conjugate gradient method. Numer. Math. 48(5), 499–523 (1986)
Bank, R.E., Rose, D.J.: Marching algorithms for elliptic boundary value problems. I. The constant coefficient case. SIAM J. Numer. Anal. 14(5), 792–829 (1977)
Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978
Ciarlet, Ph.G., Lions J.-L.; (eds.): Handbook of numerical analysis, Vol. II. Finite element methods, Part 1, North-Holland, Amsterdam, 1991
Concus, P., Golub, G.H.: Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations. SIAM J. Numer. Anal. 10, 1103–1120 (1973)
Daniel, J.W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4(1), 10–26 (1967)
Faber, V., Manteuffel, T., Parter, S.V.: On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. Appl. Math. 11, 109–163 (1990)
Fortuna, Z.: Some convergence properties of the conjugate gradient method in Hilbert space. SIAM J. Numer. Anal. 16(3), 380–384 (1979)
Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators, Vol. I. Operator Theory: Advances and Applications, 49, Birkhäuser Verlag, Basel, 1990
Goldstein, C.I., Manteuffel, T.A., Parter, S. V.: Preconditioning and boundary conditions without H2 estimates: L2 condition numbers and the distribution of the singular values. SIAM J. Numer. Anal. 30(2), 343–376 (1993)
Hackbusch, W.: Multigrid methods and applications. Springer Series in Computational Mathematics 4, Springer, Berlin, 1985
Hackbusch, W.: Elliptic differential equations. Theory and numerical treatment. Springer Series in Computational Mathematics 18, Springer, Berlin, 1992
Hayes, R.M.: Iterative methods of solving linear problems in Hilbert space. Nat. Bur. Standards Appl. Math. Ser 39, 71–104 (1954)
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards. Sect. B, 49(6), 409–436 (1952)
Kadlec, J.: On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set. Czechosl. Math. J. 14(89), 386–393 (1964)
Karátson J.: Mesh independence of the superlinear convergence of the conjugate gradient method. Submitted
Manteuffel, T., Otto, J.: Optimal equivalent preconditioners. SIAM J. Numer. Anal. 30, 790–812 (1993)
Manteuffel, T., Parter, S.V.: Preconditioning and boundary conditions. SIAM J. Numer. Anal. 27(3), 656–694 (1990)
Nevanlinna, O.: Convergence of iterations for linear equations. Birkhäuser, Basel, 1993
Rossi, T., Toivanen, J.: A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20(5), 1778–1796 (1999) (electronic)
Riesz F., Sz.-Nagy B.: Vorlesungen über Funktionalanalysis. Verlag H. Deutsch, 1982
Saad, Y., Schultz, M.H.: Conjugate gradient-like algorithms for solving nonsymmetric linear systems. Math. Comput. 44, 417–424 (1985)
Swarztrauber, P.N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19(3), 490–501 (1977)
Winter, R.: Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal. 17, 14–17 (1980)
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classification (2000): 65J10, 65F10, 65N15
The second author was supported by the Hungarian Research Grant OTKA No. T. 043765.
Dedicated to David M. Young on the occasion of his 80th birthday.
Rights and permissions
About this article
Cite this article
Axelsson, O., Karátson, J. Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators. Numer. Math. 99, 197–223 (2004). https://doi.org/10.1007/s00211-004-0557-2
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-004-0557-2