Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

It is shown in this paper that the optimal approximation property of bilinear or trilinear finite elements would be retained when the affine mapping is used to replace the Q1 mapping on each element, if the grids are refined nestedly. The new method truncates the quadratic and cubic terms in reference mappings and produces constant Jacobians and Jacobian matrices. This would avoid a shortcoming of the quadrilateral and hexahedral elements where the integrals of rational functions have to be computed or approximated. Numerical tests verify the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, T.: Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60(2), 157–174 (1998)

    MATH  Google Scholar 

  2. Arnold, D. N., Boffi, D., Falk, R. S.: Approximation by quadrilateral finite elements. Math. Comp. 71(239), 909–922 (2002)

    Article  MATH  Google Scholar 

  3. Arunakirinathar, K., Reddy, B. D.: Some geometrical results and estimates for quadrilateral finite elements. Comput. Methods Appl. Mech. Engrg. 122(3–4), 307–314 (1995)

  4. Arunakirinathar, K., Reddy, B. D.: Further results for enhanced strain methods with isoparametric elements. Comput. Methods Appl. Mech. Engrg. 127(1–4), 127–143 (1995)

  5. Arunakirinathar, K., Reddy, B. D.: A stable affine-approximate finite element method. SIAM J. Numer. Anal. 40(1), 180–197 (2002)

    Article  MATH  Google Scholar 

  6. Ciarlet, P. G.: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978

  7. Girault, V.: A local projection operator for quadrilateral finite elements. Math. Comp. 64, 1421–1431 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Jamet, P.: Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles. SIAM J. Numer. Anal. 14(5), 925–930 (1977)

    MATH  Google Scholar 

  9. Krizek, M., Neittaanmaki, P.: Finite element approximation of variational problems and applications. Pitman Monographs and Surveys in Pure and Applied Mathematics 50, Longman, Harlow, 1990

  10. Ming, P., Shi, Z.: Quadrilateral mesh. Chin. Ann. Math., Ser. B 23(2), 235–252 (2002)

    Google Scholar 

  11. Mizukami, A.: Some integration formulas for a four-node isoparametric element. Comput. Methods Appl. Mech. Engrg. 59(1), 111–121 (1986)

    Article  MATH  Google Scholar 

  12. Okabe, M.: Analytical integral formulae related to convex quadrilateral finite elements. Comput. Methods Appl. Mech. Engrg. 29(2), 201–218 (1981)

    Article  MATH  Google Scholar 

  13. Rathod, H. T.: Some analytical integration formulae for a four node isoparametric element. Comput. & Structures 30(5), 1101–1109 (1988)

    Google Scholar 

  14. Rathod, H. T., Islam, Md. Shafiqul: Some pre-computed universal numeric arrays for linear convex quadrilateral finite elements. Finite Elem. Anal. Des. 38(2), 113–136 (2001) 74S05

    Article  MATH  Google Scholar 

  15. Shi, Z.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44, 349–361 (1984)

    MATH  Google Scholar 

  16. Wahlbin, L. B.: Superconvergence in Galerkin finite element methods. Lecture Notes in Mathematics 1605, Springer, Berlin, 1995

  17. Yuan, K. Y., Huang, Y. S., Yang, H. T., Pian, T. H. H.: The inverse mapping and distortion measures for 8-node hexahedral isoparametric elements. J. Comput. Mech. 14(2), 189–199 (1994)

    MATH  Google Scholar 

  18. Zhang, S.: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. of Math., 21, 541–556 (1995)

    Google Scholar 

  19. Zhang, Z.: Personal communication on nested refinement of quadrilaterals, 1990

  20. Zhang, Z.: Analysis of some quadrilateral nonconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34, 640–663 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zlámal, M.: Superconvergence and reduced integration in the finite element method. Math. Comp. 32, 663–685 (1978)

    Google Scholar 

Download references

Acknowledgments.

The author thanks a referee who carefully read this manuscript and made it much more rigorous in notations, statements and proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangyou Zhang.

Additional information

Mathematics Subject Classification (2000): 65N30, 65N50, 65N55

Revised version received January 29, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S. On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation. Numer. Math. 98, 559–579 (2004). https://doi.org/10.1007/s00211-004-0536-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0536-7

Keywords

Navigation