Summary.
This paper introduces a scheme for the numerical solution of a model for two turbulent flows with coupling at an interface. We consider a variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 2D flows by piecewise affine triangular elements. Our main contribution is to prove that the standard Galerkin - finite element approximation of the Laplace equation approximates in L2 norm its solution by transposition, for data with low smoothness. We include some numerical tests for simple geometries that exhibit the behaviour predicted by our analysis.
Similar content being viewed by others
References
Bernardi, C., Chacón Rebollo, T., Murat, F., Lewandowsi, R.: Existence d’une solution pour un modèle de deux fluides turbulents couplés. C.R. Acad. Sc. Paris, Série I 328, 993–998 (1999)
Bernardi, C., Chacón Rebollo, T., Murat, F., Lewandowski, R.: A model for two coupled turbulent fluids. Part I : analysis of the system. In: Studies in Mathematics and its Applications, Vol. 31, D. Cioranescu and J.L. Lions, (eds.), Elsevier Science BV, 2002, pp. 69–102
Bernardi, C., Chacón Rebollo, T., Murat, F., Lewandowski, R.: A model for two coupled turbulent fluids. Part II: numerical analysis of a spectral discretization. SIAM J. Numer. Anal. Vol 4, no. 6, 2368–2394 (2003)
Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)
Bramble, J.: A second order finite-difference analog of the first biharmonic boundary value problem. Numer. Math. 9, 236–249 (1966)
Ciarlet, Ph.: The Finite Element Method for Elliptic Problems. North-Holland, 1979
Chacón Rebollo, T.: A term by term stabilization algorithm for finite element solution of incompressible flow problems. Numer. Math. 79, 283–319 (1998)
Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics 1341, Springer-Verlag, 1988
Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)
Gómez Mármol, M., Ortegón Gallego, F.: Existence of solution to nonlinear elliptic systems arising in turbulence modelling. Math. Models and Methods in Appl. Sci. 10, 247–260 (2000)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, 1985
Lewandowski, R.: Analyse mathématique et océanographie. Collection Recherches en Mathématiques Appliquées. Masson, 1997
Lewandowski, R.: The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Analysis TMA 28, 393–417 (1997)
Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier Villars, 1969
Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, 1968
Lions, P.-L., Murat, F.: Solutions renormalisées d’équations elliptiques. To appear
Mohammadi, B., Pironneau, O.: Analysis of the K-Epsilon Turbulence Model. Wiley-Masson, 1993
Stampacchia, G.: Équations elliptiques du second ordre à coefficients discontinus. Presses de l’Université de Montréal, 1965
Wilcox, D.C.: Turbulence Modelling for CFD. DCW Industries, 1993
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classification (2000): 65 N30, 76M10
Revised version received March 24, 2003
This research was partially supported by Spanish Government REN2000-1162-C02-01 and REN2000-1168-C02-01 grants
Rights and permissions
About this article
Cite this article
Bernardi, C., Rebollo, T., Mármol, M. et al. A model for two coupled turbulent fluids Part III: Numerical approximation by finite elements. Numer. Math. 98, 33–66 (2004). https://doi.org/10.1007/s00211-003-0490-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-003-0490-9