Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment’s effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
Abbreviations
- Ag NPs:
-
Silver NPs
- AmPDs:
-
Amphiphilic peptide dendrimers
- Au NPs:
-
Gold nanoparticles
- BC:
-
Breast cancer
- Bio-AgNPs:
-
Biologically produced silver nanoparticles
- bPEI:
-
Branched polyethyleneimine
- CDs:
-
Carbon dots
- CDT:
-
Chemodynamic therapy
- Ce6:
-
Chlorin e6
- CET:
-
Cetuximab
- CMNPs:
-
Citric acid-coated magnetic iron oxide nanoparticles
- CNTs:
-
Carbon nanotubes
- CPT:
-
Camptothecin
- CQDs:
-
Carbon quantum dots
- CS:
-
Chitosan
- CuGII:
-
Graphene oxide/Cu (II)
- CuNPs:
-
Copper nanoparticles
- CUR:
-
Curcumin
- DDS:
-
Drug delivery systems
- DFT:
-
Density functional theory
- DMMA:
-
2,3-Dimethylmaleic anhydride
- DOX:
-
Doxorubicin
- DPTL:
-
Dipentaerythritol
- EGFR:
-
Epidermal growth factor receptor
- EPR:
-
Enhanced permeability and retention
- ER:
-
Estrogen receptor
- FA:
-
Folic acid
- FasR:
-
Fas receptor
- Gnb:
-
Gefitinib-loaded cellulose acetate butyrate
- GO:
-
Graphene oxide
- GSH:
-
Glutathione
- HA:
-
Hyaluronic acid
- HA:
-
Hydroxyapatite
- HCC:
-
Hepatocellular carcinoma
- HER2:
-
Human epidermal growth factor-receptor 2
- HR:
-
Hormone receptor
- IC50:
-
Half-maximal inhibitory concentrations
- IONPs:
-
Iron oxide nanoparticles
- LHRH:
-
Hormone-releasing hormone
- LMD:
-
Hydrophobic polymer/lipid-MnO2
- LNPs:
-
Lipid nanoparticles
- LPO:
-
Lipid peroxidation
- LSH:
-
Liposome-silica hybrid
- LTN:
-
Luteolin
- Mdoc:
-
Molecular docking
- MET:
-
Metformin
- MNPs:
-
Magnetic nanoparticles
- MNPs:
-
Metal nanoparticles
- MRI:
-
Magnetic resonance imaging
- MSNPs:
-
Mesoporous silica nanoparticles
- MT:
-
Metallothionein
- MTX:
-
Methotrexate
- MDR:
-
Multidrug resistance
- MWCNT:
-
Multi-walled carbon nanotubes
- NIR:
-
Near-infrared light
- NLCs:
-
Nanostructured lipid carriers
- NMR:
-
Nuclear magnetic resonance
- NPs:
-
Nanoparticles
- NZVI:
-
Nanoscale zero-valent iron
- OS:
-
Median overall survival
- PAMAM:
-
Polyamidoamine dendrimers
- PBA:
-
Phenylboronic acid
- PDA:
-
Polydopamine
- pDNAs:
-
Plasmid deoxynucleic acids
- PDT:
-
Photodynamic therapy
- PEG:
-
Polyethylene glycol
- PEI-FA:
-
Polyethyleneimine-folic acid
- PLAL:
-
Pulsed laser ablation in liquid
- PLGA:
-
Polylactic-co-glycolic acid
- PLL:
-
Polylysine
- PMD:
-
Polyelectrolyte-MnO2
- PNPs:
-
Polymeric nanoparticles
- PPGP:
-
Pyrrole polypropylene glycol
- TNBC:
-
Triple-negative breast cancer
- TRZ:
-
Radiolabeled trastuzumab
- TSLs:
-
Thermosensitive liposomes
- US:
-
Ultrasound
- MNPs:
-
Magnetic nanoparticles
- MNPs:
-
Metal nanoparticles
- MRI:
-
Magnetic resonance imaging
- MSNPs:
-
Mesoporous silica nanoparticles
- MT:
-
Metallothionein
- MTX:
-
Methotrexate
- MDR:
-
Multidrug resistance
- MWCNTs:
-
Multi-walled carbon nanotubes
- NIR:
-
Near-infrared light
- NLCs:
-
Nanostructured lipid carriers
- NMR:
-
Nuclear magnetic resonance
- NPs:
-
Nanoparticles
- NZVI:
-
Nanoscale zero-valent iron
- OS:
-
Median overall survival
- PAMAM:
-
Polyamidoamine dendrimers
- PBA:
-
Phenylboronic acid
- PDA:
-
Polydopamine
- pDNAs:
-
Plasmid deoxynucleic acids
- PDT:
-
Photodynamic therapy
- PEG:
-
Polyethylene glycol
- PEI-FA:
-
Polyethyleneimine-folic acid
- PLAL:
-
Pulsed laser ablation in liquid
- PLGA:
-
Polylactic-co-glycolic acid
- PLL:
-
Polylysine
- PMD:
-
Polyelectrolyte-MnO2
- PNPs:
-
Polymeric nanoparticles
- PPGP:
-
Pyrrole polypropylene glycol
- PPI:
-
Poly(propyleneimine)
- PR:
-
Progesterone receptor
- PS:
-
Photosensitizers
- PTL:
-
Pentaerythritol
- PTX:
-
Paclitaxel
- PVC:
-
Polyvinyl chloride
- QDs:
-
Quantum dots
- qRT-PCR:
-
Quantitative real-time PCR
- ROS:
-
Reactive oxygen species
- SDT:
-
Sonodynamic therapy
- SEM:
-
Scanning electron microscopy
- siRNAs:
-
Small interfering ribonucleic acids
- SLNs:
-
Solid lipid nanoparticles
- SNPs:
-
Silica nanoparticles
- SOD:
-
Superoxide dismutase
- SPION:
-
Superparamagnetic iron oxide nanoparticles
- SWCNTs:
-
Single-walled carbon nanotubes
- TF:
-
Transferrin
- THC:
-
Tetrahydro curcumin
- TiO2:
-
Titanium dioxide
- TMD:
-
Terpolymer/protein-MnO2
- UV:
-
Ultraviolet
- Vitamin E TPGS or TPGS:
-
D-ɑ-tocopheryl polyethylene glycol succinate
- WHO:
-
World Health Organization
- ZnO NPs:
-
Zinc NPs
- α-TOS:
-
α-Tocopheryl succinate
- TME:
-
Tumor microenvironment
- qRT-PCR:
-
Quantitative real-time PCR
- ROS:
-
Reactive oxygen species
- SDT:
-
Sonodynamic therapy
- SEM:
-
Scanning electron microscopy
- siRNAs:
-
Small interfering ribonucleic acids
- SLNs:
-
Solid lipid nanoparticles
- SNPs:
-
Silica nanoparticles
- SOD:
-
Superoxide dismutase
- SPION:
-
Superparamagnetic iron oxide nanoparticles
- SWCNTs:
-
Single-walled carbon nanotubes
- TF:
-
Transferrin
- THC:
-
Tetrahydro curcumin
- TiO2:
-
Titanium dioxide
- TMD:
-
Terpolymer/protein-MnO2
- TME:
-
Tumor microenvironment
- PPI:
-
Poly(propyleneimine)
- PR:
-
Progesterone receptor
- PS:
-
Photosensitizers
- PTL:
-
Pentaerythritol
- PTX:
-
Paclitaxel
- PVC:
-
Polyvinyl chloride
- QDs:
-
Quantum dots
References
Abd El-Aziz M, Morsi S, Salama DM, Abdel-Aziz M, Abd Elwahed MS, Shaaban E, Youssef A (2019) Preparation and characterization of chitosan/polyacrylic acid/copper nanocomposites and their impact on onion production. Int J Biol Macromol 123:856–865. https://doi.org/10.1016/j.ijbiomac.2018.11.155
Abdullah A, Benchafia EM, Choi D, Abedrabbo S (2023) Synthesis and characterization of erbium-doped silica films obtained by an acid–base-catalyzed sol–gel process. J Nanomater 13:1508. https://doi.org/10.3390/nano13091508
Acharya D, Satapathy S, Thathapudi JJ, Somu P, Mishra G (2022) Biogenic synthesis of silver nanoparticles using marine algae Cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. Adv Mater Technol 37:569–580. https://doi.org/10.1080/10667857.2020.1863597
Afzal M, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M (2021) Nanomedicine in treatment of breast cancer–a challenge to conventional therapy. Semin Cancer Biol 279–292. https://doi.org/10.1016/j.semcancer.2019.12.016
Aghaei A, Shaterian M, Danafar H, Likozar B, Šuligoj A, Gyergyek S (2023) Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation. Mikrochim Acta 190:1–11. https://doi.org/10.1007/s00604-023-05761-8
Aghebati-Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, Yousefi M, Aghebati-Maleki L (2020) Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 235:1962–1972. https://doi.org/10.1002/jcp.29126
Ahmad S, Idris RAM, Wan Hanaffi WN, Perumal K, Boer JC, Plebanski M, Jaafar J, Lim JK, Mohamud R (2021) Cancer nanomedicine and immune system—interactions and challenges. Front Nanotechnol 3:681305. https://doi.org/10.3389/fnano.2021.681305
Ahmadi-Nouraldinvand F, Bourang S, Azizi S, Noori M, Noruzpour M, Yaghoubi H (2024) Preparation and characterization of multi-target nanoparticles for co-drug delivery. Med Drug Discov 100177. https://doi.org/10.1016/j.medidd.2024.100177
Ahmadpoor F, Masood A, Feliu N, Parak WJ, Shojaosadati SA (2021) The effect of surface coating of iron oxide nanoparticles on magnetic resonance imaging relaxivity. Front Nanotechnol 3:644734. https://doi.org/10.3389/fnano.2021.644734
Ahmed B, Kumar S, Ojha AK, Hirsch F, Riese S, Fischer I (2018) Facile synthesis and photophysics of graphene quantum dots. J Photochem Photobiol A 364:671–678. https://doi.org/10.1016/j.jphotochem.2018.07.006
Akbarian M, Mahjoub S, Elahi SM, Zabihi E, Tashakkorian H (2020) Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line. Colloids Surf B 186:110686. https://doi.org/10.1016/j.colsurfb.2019.110686
Alaghmandfard A, Sedighi O, Rezaei NT, Abedini AA, Khachatourian AM, Toprak MS, Seifalian A (2021) Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater Sci Eng C 120:111756. https://doi.org/10.1016/j.msec.2020.111756
Albuquerque BR, Heleno SA, Oliveira MBP, Barros L, Ferreira IC (2021) Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct 12:14–29. https://doi.org/10.1039/d0fo02324h
Alegret N, Criado A, Prato M (2017) Recent advances of graphene-based hybrids with magnetic nanoparticles for biomedical applications. Curr Med Chem 24:529–536. https://doi.org/10.2174/0929867323666161216144218
Ali A, Ahmed S (2018) Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J Agric Food Chem 66:6940–6967. https://doi.org/10.1021/acs.jafc.8b01052
Alibolandi M, Rezvani R, Farzad SA, Taghdisi SM, Abnous K, Ramezani M (2017a) Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 532:581–594. https://doi.org/10.1016/j.ijpharm.2017.09.039
Alibolandi M, Taghdisi SM, Ramezani P, Shamili FH, Farzad SA, Abnous K, Ramezani M (2017b) Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int J Pharm 519:352–364. https://doi.org/10.1016/j.ijpharm.2017.01.044
Aljabali AA, Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M, Evans DJ (2018) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomater 8:174. https://doi.org/10.3390/nano8030174
Al-Kinani MA, Haider AJ, Al-Musawi S (2021) Design and synthesis of nanoencapsulation with a new formulation of Fe@ Au-CS-CU-FA NPs by pulsed laser ablation in liquid (PLAL) method in breast cancer therapy: in vitro and in vivo. Plasmonics 16:1107–1117. https://doi.org/10.1007/s11468-021-01371-3
Al-Nemrawi N, Hameedat F, Al-Husein B, Nimrawi S (2022) Photolytic controlled release formulation of methotrexate loaded in chitosan/TiO2 nanoparticles for breast cancer. Pharmaceuticals 15:149. https://doi.org/10.3390/ph15020149
Al-Nuairi AG, Mosa KA, Mohammad MG, El-Keblawy A, Soliman S, Alawadhi H (2020) Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from Cyperus Conglomeratus root extracts on breast cancer cell line MCF-7. Biol Trace Elem Res 194:560–569. https://doi.org/10.1007/s12011-019-01791-7
Alonso J, Barandiarán JM, Barquín LF, García-Arribas A (2018) Magnetic nanoparticles, synthesis, properties, and applications. Magn Nanostruct Mater. Elsevier, pp. 1–40. https://doi.org/10.1016/b978-0-12-813904-2.00001-2
Aloss K, Hamar P (2023) Recent preclinical and clinical progress in liposomal doxorubicin. Pharm 15:893. https://doi.org/10.3390/pharmaceutics15030893
Al-Thoubaity FK (2020) Molecular classification of breast cancer: a retrospective cohort study. Ann Med Surg 49:44–48. https://doi.org/10.1016/j.amsu.2019.11.021
Alven S, Aderibigbe B (2019) Combination therapy strategies for the treatment of malaria. Molecules 24:3601. https://doi.org/10.3390/molecules24193601
Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R (2018) Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res 137:115–170. https://doi.org/10.1016/bs.acr.2017.11.003
Ankireddy SR, Kim J (2017) Synthesis of cadmium-free InP/ZnS quantum dots by microwave irradiation. Sci Adv Mater 9:179–183. https://doi.org/10.1166/sam.2017.2458
Antoniak MA, Pązik R, Bazylińska U, Wiwatowski K, Tomaszewska A, Kulpa-Greszta M, Adamczyk-Grochala J, Wnuk M, Maćkowski S, Lewińska A (2021) Multimodal polymer encapsulated CdSe/Fe3O4 nanoplatform with improved biocompatibility for two-photon and temperature stimulated bioapplications. Mater Sci Eng C 127:112224. https://doi.org/10.1016/j.msec.2021.112224
Arafat M, Ong JY, Haseeb A (2018) Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors. Appl Surf Sci 435:928–936. https://doi.org/10.1016/j.apsusc.2017.10.211
Arsalani S, Löwa N, Kosch O, Radon P, Baffa O, Wiekhorst F (2021) Magnetic separation of iron oxide nanoparticles to improve their application for magnetic particle imaging. Phys Med Biol 66:015002. https://doi.org/10.1088/1361-6560/abcd19
Arshad A, Jabbal M, Yan Y, Reay D (2019) A review on graphene based nanofluids: Preparation, characterization and applications. J Mol Liq 279:444–484. https://doi.org/10.1016/j.molliq.2019.01.153
Atallah N, Alsaleem M, Toss M, Mongan N, Rakha E (2023) Differential response of HER2-positive breast cancer to anti-HER2 therapy based on HER2 protein expression level. Br J Cancer 129:1692–1705. https://doi.org/10.1038/s41416-023-02426-4
Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M (2018) Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets 19:1696–1709. https://doi.org/10.2174/1389450119666180326122831
Bagheri E, Alibolandi M, Abnous K, Taghdisi SM, Ramezani M (2021) Targeted delivery and controlled release of doxorubicin to cancer cells by smart ATP-responsive Y-shaped DNA structure-capped mesoporous silica nanoparticles. J Mater Chem B 9:1351–1363. https://doi.org/10.1039/d0tb01960g
Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 190:64–83. https://doi.org/10.1016/j.imlet.2017.07.015
Barabadi H, Damavandi Kamali K, Jazayeri Shoushtari F, Tajani B, Mahjoub MA, Alizadeh A, Saravanan M (2019) Emerging theranostic silver and gold nanomaterials to combat prostate cancer: a systematic review. J Clust Sci 30:1375–1382. https://doi.org/10.1007/s10876-019-01588-7
Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M (2021) Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorg Chem Commun 129:108647. https://doi.org/10.1016/j.inoche.2021.108647
Basoglu H, Goncu B, Akbas F (2018) Magnetic nanoparticle-mediated gene therapy to induce Fas apoptosis pathway in breast cancer. Cancer Gene Ther 25:141–147. https://doi.org/10.1038/s41417-018-0017-2
Basu A, Upadhyay P, Ghosh A, Bose A, Gupta P, Chattopadhyay S, Chattopadhyay D, Adhikary A (2021) Hyaluronic acid engrafted metformin loaded graphene oxide nanoparticle as CD44 targeted anti-cancer therapy for triple negative breast cancer. Biochim Biophys Acta Gen Subj 1865:129841. https://doi.org/10.1016/j.bbagen.2020.129841
Bedard PL, Im S-A, Elimova E, Rha SY, Goodwin R, Ferrario C, Lee K-W, Hanna D, Meric-Bernstam F, Mayordomo J (2022) Abstract P2–13–07: Zanidatamab (ZW25), a HER2-targeted bispecific antibody, in combination with chemotherapy (chemo) for HER2-positive breast cancer (BC): Results from a phase 1 study. Cancer Res 82: P2–13–07-P12–13–07. https://doi.org/10.1158/1538-7445.sabcs21-p2-13-07
Behranvand N, Nasri F, Zolfaghari Emameh R, Khani P, Hosseini A, Garssen J, Falak R (2022) Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol Immunother 71:507–526. https://doi.org/10.1007/s00262-021-03013-3
Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. SM&T 13:18–23. https://doi.org/10.1016/j.susmat.2017.08.001
Bhagwat GS, Athawale RB, Gude RP, Md S, Alhakamy NA, Fahmy UA, Kesharwani P (2020) Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.614290
Bhattacharya S, Prajapati BG, Ali N, Mohany M, Aboul-Soud MA, Khan R (2023) Therapeutic potential of methotrexate-loaded superparamagnetic iron oxide nanoparticles coated with poly (lactic-co-glycolic acid) and polyethylene glycol against breast cancer: development, characterization, and comprehensive in vitro investigation. ACS Omega 8:27634–27649. https://doi.org/10.1021/acsomega.3c03430
Bober Z, Bartusik-Aebisher D, Aebisher D (2022) Application of dendrimers in anticancer diagnostics and therapy. Molecules 27:3237. https://doi.org/10.3390/molecules27103237
Bonotto M, Gerratana L, Poletto E, Driol P, Giangreco M, Russo S, Minisini AM, Andreetta C, Mansutti M, Pisa FE (2014) Measures of outcome in metastatic breast cancer: insights from a real-world scenario. The Oncologist 19:608–615. https://doi.org/10.1634/theoncologist.2014-0002
Bor G, Mat Azmi ID, Yaghmur A (2019) Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 10:113–132. https://doi.org/10.4155/tde-2018-0062
Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127:3029–3030. https://doi.org/10.1002/cncr.33587
Bruna T, Maldonado-Bravo F, Jara P, Caro N (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22:7202. https://doi.org/10.3390/ijms22137202
Caminade A-M (2020) Phosphorus dendrimers as nanotools against cancers. Molecules 25:3333. https://doi.org/10.3390/molecules25153333
Cao D, Zhang X, Akabar M, Luo Y, Wu H, Ke X, Ci T (2019) Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif Cells Nanomed Biotechnol 47:181–191. https://doi.org/10.1080/21691401.2018.1548470
Cao Z, Liu R, Li Y, Luo X, Hua Z, Wang X, Xue Z, Zhang Z, Lu C, Lu A (2023) MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer. BCR 25:1–15. https://doi.org/10.1186/s13058-022-01599-9
Castillo RR, Lozano D, González B, Manzano M, Izquierdo-Barba I, Vallet-Regí M (2019) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv 16:415–439. https://doi.org/10.1080/17425247.2019.1598375
Çeşmeli S, Biray Avci C (2019) Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J Drug Target 27:762–766. https://doi.org/10.1080/1061186x.2018.1527338
Chan S, Liu M, Latham K, Haruta M, Kurata H, Teranishi T, Tachibana Y (2017) Monodisperse and size-tunable PbS colloidal quantum dots via heterogeneous precursors. J Mater Chem C 5:2182–2187. https://doi.org/10.1039/c6tc05329g
Chen Z, Yuan J, Xu Y, Zhang C, Li Z, Gong J, Li Y, Shen L, Gao J (2022) From AVATAR mice to patients: RC48-ADC exerted promising efficacy in advanced gastric cancer with HER2 expression. Front Pharmacol 12:757994. https://doi.org/10.3389/fphar.2021.757994
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G (2020) Applications and limitations of dendrimers in biomedicine. Molecules 25:3982. https://doi.org/10.3390/molecules25173982
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB (2022) Green metallic nanoparticles: biosynthesis to applications. Front Bioeng Biotechnol 10:548. https://doi.org/10.3389/fbioe.2022.874742
Chow EK-H, Gu M, Xu J (2020) Carbon nanomaterials: fundamental concepts, biological interactions, and clinical applications. Nanoparticles Biomed Appl. Elsevier, pp. 223–242. https://doi.org/10.1016/b978-0-12-816662-8.00014-x
Coroş M, Pogăcean F, Măgeruşan L, Socaci C, Pruneanu S (2019) A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front Mater Sci 13:23–32. https://doi.org/10.1007/s11706-019-0452-5
Crossen SL, Goswami T (2022) Nanoparticulate carriers for drug delivery. J Pharm Biopharm 4:237. https://doi.org/10.25082/JPBR.2022.01.001
Curran KJ, Margossian SP, Kernan NA, Silverman LB, Williams DA, Shukla N, Kobos R, Forlenza CJ, Steinherz P, Prockop S (2019) Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. Am J Hematol 134:2361–2368. https://doi.org/10.1182/blood.2019001641
Dai Y, Su J, Wu K, Ma W, Wang B, Li M, Sun P, Shen Q, Wang Q, Fan Q (2019) Multifunctional thermosensitive liposomes based on natural phase-change material: near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl Mater Interfaces 11:10540–10553. https://doi.org/10.1021/acsami.8b22748
Davezac M, Meneur C, Buscato M, Zahreddine R, Arnal J-F, Dalenc F, Lenfant F, Fontaine C (2023) The beneficial effects of tamoxifen on arteries: a key player for cardiovascular health of breast cancer patient. Biochem Pharmacol 115677. https://doi.org/10.1016/j.bcp.2023.115677
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M (2023) Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose–response meta-analysis of randomized controlled trials. Cytokine 164:156144. https://doi.org/10.1016/j.cyto.2023.156144
Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT (2021) Lipid nanoparticles as carriers for bioactive delivery. Front Chem 9:580118. https://doi.org/10.3389/fchem.2021.580118
Dillon P, Basho R, Han HS, Kolberg H-C, Tkaczuk K, Zahrah G, Gion M, Voss H, Meisel J, Pluard T (2023) Abstract OT1–03–06: Phase 1b/2 study of ladiratuzumab vedotin (LV) in combination with pembrolizumab for first-line treatment of triple-negative breast cancer (SGNLVA-002, trial in progress). Cancer Res 83: OT1–03–06-OT01–03–06. https://doi.org/10.1158/1538-7445.sabcs22-ot1-03-06
Dimapilis EAS, Hsu C-S, Mendoza RMO, Lu M-C (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28:47–56. https://doi.org/10.1016/j.serj.2017.10.001
Ding Y, Yang R, Yu W, Hu C, Zhang Z, Liu D, An Y, Wang X, He C, Liu P (2021) Chitosan oligosaccharide decorated liposomes combined with TH302 for photodynamic therapy in triple negative breast cancer. J Nanobiotechnology 19:147. https://doi.org/10.1186/s12951-021-00891-8
Dinparvar S, Bagirova M, Allahverdiyev AM, Abamor ES, Safarov T, Aydogdu M, Aktas D (2020) A nanotechnology-based new approach in the treatment of breast cancer: biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. J Photochem Photobiol B Biol 208:111902. https://doi.org/10.1016/j.jphotobiol.2020.111902
Dongsar TT, Dongsar TS, Abourehab MA, Gupta N, Kesharwani P (2023) Emerging application of magnetic nanoparticles for breast cancer therapy. Eur Polym J 111898. https://doi.org/10.1016/j.eurpolymj.2023.111898
Dorjsuren B, Chaurasiya B, Ye Z, Liu Y, Li W, Wang C, Shi D, Evans CE, Webster TJ, Shen Y (2020) Cetuximab-coated thermo-sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-expressing breast cancer combined therapy. Int J Nanomedicine 8201–8215. https://doi.org/10.2147/ijn.s261671
Ebrahiminezhad A, Taghizadeh S, Ghasemi Y, Berenjian A (2018) Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci Total Environ 621:1527–1532. https://doi.org/10.1016/j.scitotenv.2017.10.076
Ekladious I, Colson YL, Grinstaff MW (2019) Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 18:273–294. https://doi.org/10.1038/s41573-018-0005-0
Elazab HA (2018) The catalytic activity of copper oxide nanoparticles towards carbon monoxide oxidation catalysis: microwave–assisted synthesis approach. Biointerface Res in Appl Chem 8(3):3278–3281. https://buescholar.bue.edu.eg/chem_eng/105
Elbeltagi S, M Saeedib A, El-dek S, Ali MA (2023) A novel biocompatibility docetaxel loaded with magnetic nanoparticles for cancer therapy. SI and Ali, Maha A, A Novel Biocompatibility Docetaxel Loaded with Magnetic Nanoparticles for Cancer Therapy. https://doi.org/10.2139/ssrn.4496492
Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong J-H, Yook S (2019) Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol Pharm 16:1184–1199. https://doi.org/10.1021/acs.molpharmaceut.8b01157
Emens LA, Loi S (2023) Immunotherapy approaches for breast cancer patients in 2023. Cold Spring Harb Perspect Med 13:a041332. https://doi.org/10.1101/cshperspect.a041332
Fakhar-e-Alam M, Shafiq Z, Mahmood A, Atif M, Anwar H, Hanif A, Yaqub N, Farooq W, Fatehmulla A, Ahmad S (2021) Assessment of green and chemically synthesized copper oxide nanoparticles against hepatocellular carcinoma. J King Saud Univ Sci 33:101669. https://doi.org/10.1016/j.jksus.2021.101669
Fan Y, Marioli M, Zhang K (2021) Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 192:113642. https://doi.org/10.1016/j.jpba.2020.113642
Fang RH, Kroll AV, Gao W, Zhang L (2018) Cell membrane coating nanotechnology. Adv Mater 30:1706759. https://doi.org/10.1002/adma.201706759
Fang L, Zhou H, Cheng L, Wang Y, Liu F, Wang S (2023) The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Front Cell Infect 13:1124411. https://doi.org/10.3389/fcimb.2023.1124411
Fatima H, Jin ZY, Shao Z, Chen XJ (2022) Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci 621:440–463. https://doi.org/10.1016/j.jcis.2022.04.087
Foundation NBC (2024) Side effects of breast cancer treatment and how to manage them. In: Shockney LD (ed.) Side Effects of Breast Cancer Treatment and How to Manage Them. National Breast Cancer Foundation
Fraguas-Sánchez AI, Lozza I, Torres-Suárez AI (2022) Actively targeted nanomedicines in breast cancer: From pre-clinal investigation to clinic. Cancers 14:1198. https://doi.org/10.3390/cancers14051198
Franco P, De Felice F, Jagsi R, Marta GN, Kaidar-Person O, Gabrys D, Kim K, Ramiah D, Meattini I, Poortmans P (2023) Breast cancer radiation therapy: a bibliometric analysis of the scientific literature. Clin Transl Radiat Oncol 39:100556. https://doi.org/10.1016/j.ctro.2022.11.015
Fu T, Kong Q, Sheng H, Gao L (2016) Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast 2016. https://doi.org/10.1155/2016/2412958
Fujiwara Y, Mukai H, Saeki T, Ro J, Lin Y-C, Nagai SE, Lee KS, Watanabe J, Ohtani S, Kim SB (2019) A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br J Cancer 120:475–480. https://doi.org/10.1038/s41416-019-0391-z
Gabizon AA, Patil Y, La-Beck NM (2016) New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 29:90–106. https://doi.org/10.1016/j.drup.2016.10.003
Gangopadhyay M, Mukhopadhyay SK, Karthik S, Barman S, Singh NP (2015) Targeted photoresponsive TiO2–coumarin nanoconjugate for efficient combination therapy in MDA-MB-231 breast cancer cells: synergic effect of photodynamic therapy (PDT) and anticancer drug chlorambucil. MedChemComm 6:769–777. https://doi.org/10.1039/c4md00481g
Gao F, Zhang J, Fu C, Xie X, Peng F, You J, Tang H, Wang Z, Li P, Chen J (2017) iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine 4147–4162. https://doi.org/10.4172/2471-8556.c1.003
Garrido-Castro AC, Lin NU, Polyak K (2019) Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 9:176–198. https://doi.org/10.1158/2159-8290.cd-18-1177
Gasztych M, Gola A, Kobryń J, Musiał W (2016) Synthesis and formulation of thermosensitive drug carrier for temperature triggered delivery of naproxen sodium. Molecules 21:1473. https://doi.org/10.3390/molecules21111473
Gavas S, Quazi S, Karpiński TM (2021) Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett 16:173. https://doi.org/10.20944/preprints202108.0218.v1
Ghaffari S-B, Sarrafzadeh M-H, Fakhroueian Z, Shahriari S, Khorramizadeh MR (2017) Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: Synthesis, characterization, and anticancer assessment. Mater Sci Eng C 79:465–472. https://doi.org/10.1016/j.msec.2017.05.065
Gharehdaghi Z, Rahimi R, Naghib SM, Molaabasi F (2021) Cu (II)-porphyrin metal–organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. J Biol Inorg Chem 26:689–704. https://doi.org/10.1007/s00775-021-01887-3
Ghosh S, Dutta S, Sarkar A, Kundu M, Sil PC (2021) Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf B 197:111404. https://doi.org/10.1016/j.colsurfb.2020.111404
Gidwani B, Sahu V, Shukla SS, Pandey R, Joshi V, Jain VK, Vyas A (2021) Quantum dots: Prospectives, toxicity, advances and applications. J Drug Deliv Sci Technol 61:102308. https://doi.org/10.1016/j.jddst.2020.102308
Gilani SJ, Bin-Jumah M, Rizwanullah M, Imam SS, Imtiyaz K, Alshehri S, Rizvi MMA (2021) Chitosan coated luteolin nanostructured lipid carriers: optimization, in vitro-ex vivo assessments and cytotoxicity study in breast cancer cells. Coatings 11:158. https://doi.org/10.3390/coatings11020158
Gong Y, Ji Y, Liu F, Li J, Cao Y (2017) Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. J Appl Toxicol 37:895–901. https://doi.org/10.1002/jat.3415
Gordijo CR, Abbasi AZ, Amini MA, Lip HY, Maeda A, Cai P, O’Brien PJ, DaCosta RS, Rauth AM, Wu XY (2015) Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment. Adv Funct Mater 25:1858–1872. https://doi.org/10.1002/adfm.201570087
Gorzkiewicz M, Konopka M, Janaszewska A, Tarasenko II, Sheveleva NN, Gajek A, Neelov IM, Klajnert-Maculewicz B (2020) Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem 95:103504. https://doi.org/10.1016/j.bioorg.2019.103504
Gounden S, Daniels A, Singh M (2021) Chitosan-modified silver nanoparticles enhance cisplatin activity in breast cancer cells. Biointerface Res Appl Chem 11:10572–10584. https://doi.org/10.11159/nddte19.115
Gregoriou Y, Gregoriou G, Yilmaz V, Kapnisis K, Prokopi M, Anayiotos A, Strati K, Dietis N, Constantinou AI, Andreou C (2021) Resveratrol loaded polymeric micelles for theranostic targeting of breast cancer cells. Nanotheranostics 5:113. https://doi.org/10.7150/ntno.51955
Grewal IK, Singh S, Arora S, Sharma N (2021) Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res Appl Chem 11:11151. https://doi.org/10.33263/BRIAC114.1115111171
Guo M, Xiang H-J, Wang Y, Zhang Q-L, An L, Yang S-P, Ma Y, Wang Y, Liu J-G (2017) Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy. Chem Comm 53:3253–3256. https://doi.org/10.1039/c7cc00670e
Guven A, Villares GJ, Hilsenbeck SG, Lewis A, Landua JD, Dobrolecki LE, Wilson LJ, Lewis MT (2017) Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater 58:466–478. https://doi.org/10.1016/j.actbio.2017.04.035
Haider M, Abdin SM, Kamal L, Orive G (2020) Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics 12:288. https://doi.org/10.3390/pharmaceutics12030288
Hallett RM, Dvorkin-Gheva A, Bane A, Hassell JA (2012) A gene signature for predicting outcome in patients with basal-like breast cancer. Sci Rep 2:227. https://doi.org/10.1038/srep00227
Hammami I, Alabdallah NM (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ Sci 33:101560. https://doi.org/10.1016/j.jksus.2021.101560
Han B, Yang Y, Chen J, Tang H, Sun Y, Zhang Z, Wang Z, Li Y, Li Y, Luan X (2020) Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with antitumor activity. Int J Nanomedicine. 553–571. https://doi.org/10.2147/ijn.s228715
Hanafy NA, Leporatti S, El-Kemary MA (2019) Mucoadhesive hydrogel nanoparticles as smart biomedical drug delivery system. Appl Sci 9:825. https://doi.org/10.3390/app9050825
Hatami M, Kouchak M, Kheirollah A, Khorsandi L, Rashidi M (2023) Effective inhibition of breast cancer stem cell properties by quercetin-loaded solid lipid nanoparticles via reduction of Smad2/Smad3 phosphorylation and β-catenin signaling pathway in triple-negative breast cancer. Biochem Biophys Res Commun 664:69–76. https://doi.org/10.1016/j.bbrc.2023.03.077
He K, Zhu Y, Bi Z, Chen X, Xiao X, Xu G, Xu X (2020a) Highly luminescent CsPbI3 quantum dots and their fast anion exchange at oil/water interface. Chem Phys Lett 741:137096. https://doi.org/10.1016/j.cplett.2020.137096
He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J (2020b) A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif 53:e12822. https://doi.org/10.1111/cpr.12822
He C, Zhang X, Chen C, Liu X, Chen Y, Yan R, Fan T, Gai Y, Lee RJ, Ma X (2021) A solid lipid coated calcium peroxide nanocarrier enables combined cancer chemo/chemodynamic therapy with O2/H2O2 self-sufficiency. Acta Biomater 122:354–364. https://doi.org/10.1016/j.actbio.2020.12.036
Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H (2019) Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158:8–14. https://doi.org/10.1016/j.poly.2018.10.049
Hernandes EP, Lazarin-Bidóia D, Bini RD, Nakamura CV, Cótica LF, de Oliveira Silva Lautenschlager S (2023) Doxorubicin-loaded iron oxide nanoparticles induce oxidative stress and cell cycle arrest in breast cancer cells. Antioxidants 12:237. https://doi.org/10.3390/antiox12020237
Hiremath CG, Heggnnavar GB, Kariduraganavar MY, Hiremath MB (2019) Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles. Prog Biomater 8:155–168. https://doi.org/10.1007/s40204-019-0118-5
Ho D-K, LeGuyader C, Srinivasan S, Roy D, Vlaskin V, Chavas TE, Lopez CL, Snyder JM, Postma A, Chiefari J (2021) Fully synthetic injectable depots with high drug content and tunable pharmacokinetics for long-acting drug delivery. J Control Release 329:257–269. https://doi.org/10.1016/j.jconrel.2020.11.030
Hoopes PJ, Moodie KL, Petryk AA, Petryk JD, Sechrist S, Gladstone DJ, Steinmetz NF, Veliz FA, Bursey AA, Wagner RJ (2017) Hypo-fractionated radiation, magnetic nanoparticle hyperthermia and a viral immunotherapy treatment of spontaneous canine cancer. Energy-based Treatment of Tissue and Assessment IX. SPIE, pp. 24–32. https://doi.org/10.1117/12.2256213
Hossainzadeh S, Ranji N, Naderi Sohi A, Najafi F (2019) Silibinin encapsulation in polymersome: a promising anticancer nanoparticle for inducing apoptosis and decreasing the expression level of miR-125b/miR-182 in human breast cancer cells. J Cell Physiol 234:22285–22298. https://doi.org/10.1002/jcp.28795
Hou S, Grigorian B, Schmid A, Desai N (2018) Antitumor activity of ABI-009 (nab-rapamycin) in combination with anti-PD1 antibody in a syngeneic mouse model of B16 melanoma. Cancer Res 78:3856–3856. https://doi.org/10.1158/1538-7445.am2018-3856
Hoxha I, Sadiku F, Hoxha L, Nasim M, Buteau MAC, Grezda K, Chamberlin MD (2024) Breast cancer and lifestyle factors: umbrella review. Hematol Oncol Clin 38:137–170. https://doi.org/10.1016/j.hoc.2023.07.005
Huang L, Huang J, Huang J, Xue H, Liang Z, Wu J, Chen C (2020) Nanomedicine–a promising therapy for hematological malignancies. Biomater Sci 8:2376–2393. https://doi.org/10.1039/d0bm00129e
Huang W, Fang H, Zhang S, Yu H (2021) Optimised green synthesis of copper oxide nanoparticles and their antifungal activity. Micro Nano Lett 16:374–380. https://doi.org/10.1049/mna2.12060
Huang Y, Fan C-Q, Dong H, Wang S-M, Yang X-C, Yang S-M (2017) Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomedicine 1815–1825. https://doi.org/10.2147/ijn.s127349
Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, Arciola CR (2022) Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics 11:322. https://doi.org/10.3390/antibiotics11030322
Ibrahim M, Abuwatfa WH, Awad NS, Sabouni R, Husseini GA (2022) Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and metal-organic frameworks: a review. Pharmaceutics 14:254. https://doi.org/10.3390/pharmaceutics14020254
Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ahmad R, Ashraf M (2019) Plant-extract mediated green approach for the synthesis of ZnONPs: characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. J Mol Struct 1189:315–327. https://doi.org/10.1016/j.molstruc.2019.04.060
Iqbal H, Razzaq A, Uzair B, Ul Ain N, Sajjad S, Althobaiti NA, Albalawi AE, Menaa B, Haroon M, Khan M (2021) Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice. Materials 14:3155. https://doi.org/10.3390/ma14123155
Isaacoff BP, Brown KA (2017) Progress in top-down control of bottom-up assembly. J Am Chem Soc 6508–6510. https://doi.org/10.1021/acs.nanolett.7b04479
Iturrioz-Rodríguez N, Correa-Duarte MA, Fanarraga ML (2019) Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles. Int J Nanomedicine 3389–3401. https://doi.org/10.2147/ijn.s198848
Jallah JK, Dweh TJ, Anjankar A, Palma O, Dweh III TJ (2023) A review of the advancements in targeted therapies for breast cancer. Cureus 15. https://doi.org/10.7759/cureus.47847
Janiszewska J, Posadas I, Játiva P, Bugaj-Zarebska M, Urbanczyk-Lipkowska Z, Ceña V (2016) Second generation amphiphilic poly-lysine dendrons inhibit glioblastoma cell proliferation without toxicity for neurons or astrocytes. PLoS ONE 11:e0165704. https://doi.org/10.1371/journal.pone.0165704
Jeon M, Lin G, Stephen ZR, Kato FL, Zhang M (2019) Paclitaxel‐loaded iron oxide nanoparticles for targeted breast cancer therapy. Adv Ther 1900081. https://doi.org/10.1002/adtp.201900081
Jeong EH, Jung G, Hong CA, Lee H (2014) Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res 37:53–59. https://doi.org/10.1007/s12272-013-0273-5
Jia L, Kilbey SM, Wang X (2020) Tailoring azlactone-based block copolymers for stimuli-responsive disassembly of nanocarriers. Langmuir 36:10200–10209. https://doi.org/10.1021/acs.langmuir.0c01681
Jiang Z, Zhao C, Liu X (2014) Synthesis of poly (ethylene glycol)-graft-chitosan and using as ligand for fabrication of water-soluble quantum dots. Colloids Surf B 115:260–266. https://doi.org/10.1016/j.colsurfb.2013.12.001
Jiang Q, Liu Y, Guo R, Yao X, Sung S, Pang Z, Yang W (2019) Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 192:292–308. https://doi.org/10.1016/j.biomaterials.2018.11.021
Jin H, Pi J, Zhao Y, Jiang J, Li T, Zeng X, Yang P, Evans CE, Cai J (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9:16365–16374. https://doi.org/10.1039/c7nr06898k
Jordan VC (2014) Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocr Relat Cancer 21:R235–R246. https://doi.org/10.1530/erc-14-0092
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S (2023) Nanoparticles: taking a unique position in medicine. Nanomaterials 13:574. https://doi.org/10.3390/nano13030574
Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R (2016) Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochem Res 41:3004–3019. https://doi.org/10.1007/s11064-016-2020-z
Junnuthula V, Kolimi P, Nyavanandi D, Sampathi S, Vora LK, Dyawanapelly S (2022) Polymeric micelles for breast cancer therapy: recent updates, clinical translation and regulatory considerations. Pharmaceutics 14:1860. https://doi.org/10.3390/pharmaceutics14091860
Kalaiarasi A, Sankar R, Anusha C, Saravanan K, Aarthy K, Karthic S, Tl M, Ravikumar V (2018) Copper oxide nanoparticles induce anticancer activity in A549 lung cancer cells by inhibition of histone deacetylase. Biotechnol Lett 40:249–256. https://doi.org/10.1007/s10529-017-2463-6
Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK (2019) Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C 98:1252–1276. https://doi.org/10.1016/j.msec.2019.01.066
Kang L, Chao A, Zhang M, Yu T, Wang J, Wang Q, Yu H, Jiang N, Zhang D (2021) Modulating the molecular geometry and solution self-assembly of amphiphilic polypeptoid block copolymers by side chain branching pattern. J Am Chem Soc 143:5890–5902. https://doi.org/10.1021/jacs.1c01088
Karimi Z, Taymouri S, Minaiyan M, Mirian M (2022) Evaluation of thermosensitive chitosan hydrogel containing gefitinib loaded cellulose acetate butyrate nanoparticles in a subcutaneous breast cancer model. Int J Pharm 624:122036. https://doi.org/10.1016/j.ijpharm.2022.122036
Kataria N, Garg V (2018) Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: regeneration and mechanism. Chemosphere 208:818–828. https://doi.org/10.1016/j.chemosphere.2018.06.022
Kemp JA, Kwon YJ (2021) Cancer nanotechnology: current status and perspectives. Nano Converg 8:34. https://doi.org/10.1186/s40580-021-00282-7
Kerans FF, Lungaro L, Azfer A, Salter DM (2018) The potential of intrinsically magnetic mesenchymal stem cells for tissue engineering. Int J Mol Sci 19:3159. https://doi.org/10.3390/ijms19103159
Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MA, Sahebkar A (2022) Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. J Biomater Sci Polym Ed 33:2433–2471. https://doi.org/10.1080/09205063.2022.2103627
Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
Khosa A, Reddi S, Saha RN (2018) Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613. https://doi.org/10.1016/j.biopha.2018.04.055
Khosravian P, Shafiee Ardestani M, Khoobi M, Ostad SN, Dorkoosh FA, Akbari Javar H, Amanlou M (2016) Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. Onco Targets Ther 7315–7330. https://doi.org/10.2147/ott.s113815
Kim S-E, Tieu MV, Hwang SY, Lee M-H (2020) Magnetic particles: their applications from sample preparations to biosensing platforms. Micromachines 11:302. https://doi.org/10.3390/mi11030302
Kumar A, Dixit CK (2017) Methods for characterization of nanoparticles. Advances in nanomedicine for the delivery of therapeutic nucleic acids. Elsevier, pp. 43–58. https://doi.org/10.1016/b978-0-08-100557-6.00003-1
Kuo W-S, Chen H-H, Chen S-Y, Chang C-Y, Chen P-C, Hou Y-I, Shao Y-T, Kao H-F, Hsu C-LL, Chen Y-C (2017) Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 120:185–194. https://doi.org/10.1016/j.biomaterials.2016.12.022
Lacroce E, Rossi F (2022) Polymer-based thermoresponsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv 19:1203–1215. https://doi.org/10.1080/17425247.2022.2078806
Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR (2021) Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front Microbiol 12:636588. https://doi.org/10.3389/fmicb.2021.636588
Lakshmipriya T, Gopinath SC (2021) Introduction to nanoparticles and analytical devices. Nanoparticles in Analytical and Medical Devices. Elsevier, pp. 1–29. https://doi.org/10.1016/b978-0-12-821163-2.00001-7
Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7:2078–2089. https://doi.org/10.1021/nn3043463
Lee H, Park S, Kang JE, Lee HM, Kim SA, Rhie SJ (2020) Efficacy and safety of nanoparticle-albumin-bound paclitaxel compared with solvent-based taxanes for metastatic breast cancer: a meta-analysis. Sci Rep 10:530. https://doi.org/10.1038/s41598-019-57380-0
Legge CJ, Colley HE, Lawson MA, Rawlings AE (2019) Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. J Oral Pathol Med 48:803–809. https://doi.org/10.1111/jop.12921
Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:1–17. https://doi.org/10.1038/natrevmats.2016.71
Li J, Liang H, Liu J, Wang Z (2018a) Poly (amidoamine)(PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 546:215–225. https://doi.org/10.1016/j.ijpharm.2018.05.045
Li N, Wang Z, Zhang Y, Zhang K, Xie J, Liu Y, Li W, Feng N (2018b) Curcumin-loaded redox-responsive mesoporous silica nanoparticles for targeted breast cancer therapy. Artif Cells Nanomed Biotechnol 46:921–935. https://doi.org/10.1080/21691401.2018.1473412
Li Q, Wen J, Liu C, Jia Y, Wu Y, Shan Y, Qian Z, Liao J (2019) Graphene-nanoparticle-based self-healing hydrogel in preventing postoperative recurrence of breast cancer. ACS Biomater Sci Eng 5:768–779. https://doi.org/10.1021/acsbiomaterials.8b01475
Li H, Zha S, Li H, Liu H, Wong KL, All AH (2022) Polymeric dendrimers as nanocarrier vectors for neurotheranostics. Small 18:2203629. https://doi.org/10.1002/smll.202203629
Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, Fan Z, Li J (2023a) Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 15:2233. https://doi.org/10.3390/pharmaceutics15092233
Li L, Zhang F, Liu Z, Fan Z (2023c) Immunotherapy for triple-negative breast cancer: combination strategies to improve outcome. Cancers 15:321. https://doi.org/10.3390/cancers15010321
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C (2023d) Designing smart iron oxide nanoparticles for MR imaging of tumors. Int J Biomed Imaging 1:315–339. https://doi.org/10.1021/cbmi.3c00026
Li J, Zhou Y, Yan S, Wu W, Sharifi M (2023b) Core-shell iron oxide-platinium@ metal organic framework/epirubicin nanospheres: synthesis, characterization and anti-breast cancer activity. Arab J Chem 105229. https://doi.org/10.1016/j.arabjc.2023.105229
Licciardi M, Li Volsi A, Mauro N, Scialabba C, Cavallaro G, Giammona G (2016) Preparation and characterization of inulin coated gold nanoparticles for selective delivery of doxorubicin to breast cancer cells. J. Nanomater 2016. https://doi.org/10.1155/2016/2078315
Lin X, Chen T (2024) A review of in vivo toxicity of quantum dots in animal models. Int J Nanomedicine 8143–8168. https://doi.org/10.2147/ijn.s434842
Liu M, Fu M, Yang X, Jia G, Shi X, Ji J, Liu X, Zhai G (2020a) Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf B 196:111284. https://doi.org/10.1016/j.colsurfb.2020.111284
Liu S, Yu B, Wang S, Shen Y, Cong H (2020b) Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci 281:102165. https://doi.org/10.1016/j.cis.2020.102165
Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27:1372. https://doi.org/10.3390/molecules27041372
Lorusso M, Scolozzi V, Taralli S, Caldarella C, Altini C, Rubini G, Calcagni ML (2020) Radiolabelled Trastuzumab PET/CT imaging: a promising non-invasive tool for the in vivo assessment of HER2 status in breast cancer patients. Clin Transl Imaging 8:95–105. https://doi.org/10.1007/s40336-020-00362-4
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A (2021) Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers 13:4287. https://doi.org/10.3390/cancers13174287
Luther DC, Huang R, Jeon T, Zhang X, Lee Y-W, Nagaraj H, Rotello VM (2020) Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 156:188–213. https://doi.org/10.1016/j.addr.2020.06.020
Lux MP, Fasching PA (2023) Breast cancer and genetic BRCA1/2 testing in routine clinical practice: why, when and for whom? Geburtshilfe Frauenheilkd 83:310–320. https://doi.org/10.1055/a-1929-2629
Ma F, Yan M, Li W, Ouyang Q, Tong Z, Teng Y, Wang Y, Wang S, Geng C, Luo T (2023) Pyrotinib versus placebo in combination with trastuzumab and docetaxel as first line treatment in patients with HER2 positive metastatic breast cancer (PHILA): randomised, double blind, multicentre, phase 3 trial. bmj 383. https://doi.org/10.1136/bmj-2023-076065
Madhubala V, Pugazhendhi A, Thirunavukarasu K (2019) Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (TiO2 NPs) on human cell lines-An in vitro study. Process Biochem 86:186–195. https://doi.org/10.1016/j.procbio.2019.08.004
Mahani M, Pourrahmani-Sarbanani M, Yoosefian M, Divsar F, Mousavi SM, Nomani A (2021) Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: an in vitro and in silico study. J Drug Deliv Sci Technol 62:102342. https://doi.org/10.1016/j.jddst.2021.102342
Mahani M, Bahmanpouri M, Khakbaz F, Divsar F (2023) Doxorubicin-loaded polymeric micelles decorated with nitrogen-doped carbon dots for targeted breast cancer therapy. J Drug Deliv Sci Technol 79:104055. https://doi.org/10.1016/j.jddst.2022.104055
Mahmood K, Khalid A, Zafar MS, Rehman F, Hameed M, Mehran MT (2019) Enhanced efficiency and stability of perovskite solar cells using polymer-coated bilayer zinc oxide nanocrystals as the multifunctional electron-transporting layer. J Colloid Interface Sci 538:426–432. https://doi.org/10.1016/j.jcis.2018.12.001
Maiti D, Tong X, Mou X, Yang K (2019) Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 9:1401. https://doi.org/10.3389/fphar.2018.01401
Maitland ML, Sachdev JC, Sharma MR, Moreno V, Boni V, Kummar S, Stringer-Reasor E, Lakhani N, Moreau AR, Xuan D (2021) First-in-human study of PF-06647020 (Cofetuzumab Pelidotin), an antibody–drug conjugate targeting protein tyrosine kinase 7, in advanced solid tumors. Clin Cancer Res 27:4511–4520. https://doi.org/10.1158/1078-0432.ccr-20-3757
Malik P, Mukherjee TK (2018) Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 553:483–509. https://doi.org/10.1016/j.ijpharm.2018.10.048
Man F, Gawne PJ, de Rosales RT (2019) Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 143:134–160. https://doi.org/10.1016/j.addr.2019.05.012
Mandriota G, Di Corato R, Benedetti M, De Castro F, Fanizzi FP, Rinaldi R (2018) Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy. ACS Appl Mater Interfaces 11:1864–1875. https://doi.org/10.1021/acsami.8b18717
Mane SR, Sathyan A, Shunmugam R (2019) Barbiturate derived amphiphilic homopolymers: synthesis, characterization, self-assembly and anticancer drug delivery. Ther Deliv 10:419–431. https://doi.org/10.4155/tde-2019-0031
Massadeh S, Omer ME, Alterawi A, Ali R, Alanazi FH, Almutairi F, Almotairi W, Alobaidi FF, Alhelal K, Almutairi MS (2020) Optimized polyethylene glycolylated polymer–lipid hybrid nanoparticles as a potential breast cancer treatment. Pharmaceutics 12:666. https://doi.org/10.3390/pharmaceutics12070666
Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS (2022) Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 387:9–20. https://doi.org/10.1056/NEJMoa2203690
Mohamed EA, Elsharabasy SF, Abdulsamad D (2019) Evaluation of in vitro nematicidal efficiency of copper nanoparticles against root-knot nematode Meloidogyne incognita. J South Asian Nat Hist 2:1–6
Mohamed EA (2020) Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon 6. https://doi.org/10.1016/j.heliyon.2019.e03123
Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14. https://doi.org/10.1016/j.partic.2016.06.001
Mohanty SS, Sahoo CR, Padhy RN (2022) Role of hormone receptors and HER2 as prospective molecular markers for breast cancer: an update. Genes Dis 9:648–658. https://doi.org/10.1016/j.gendis.2020.12.005
Mojeiko G, de Brito M, Salata GC, Lopes LB (2019) Combination of microneedles and microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of breast cancer. Int J Pharm 560:365–376. https://doi.org/10.1016/j.ijpharm.2019.02.011
Moosavian SA, Bianconi V, Pirro M, Sahebkar A (2021) Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin. Cancer Biol, 337–348. https://doi.org/10.1016/j.semcancer.2019.09.025
Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R (2019) New insights into designing hybrid nanoparticles for lung cancer: diagnosis and treatment. J Control Release 295:250–267. https://doi.org/10.1016/j.jconrel.2019.01.009
Mukherjee S, Liang L, Veiseh O (2020) Recent advancements of magnetic nanomaterials in cancer therapy. Pharm 12:147. https://doi.org/10.3390/pharmaceutics12020147
Munster P, Krop IE, LoRusso P, Ma C, Siegel BA, Shields AF, Molnár I, Wickham TJ, Reynolds J, Campbell K (2018) Safety and pharmacokinetics of MM-302, a HER2-targeted antibody–liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer 119:1086–1093. https://doi.org/10.1038/s41416-018-0235-2
Narmani A, Mohammadnejad J, Yavari K (2019) Synthesis and evaluation of polyethylene glycol-and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. J Drug Deliv Sci Technol 50:278–286. https://doi.org/10.1016/j.jddst.2019.01.037
Nezhadi S, Norouzi P, Rasouli A, Javar HA, Ostad SN, Dorkoosh F (2023) Co-delivery of paclitaxel and regorafenib by F127/TPGS mixed micelles for triple negative breast cancer treatment. J Drug Deliv Sci Technol 104673. https://doi.org/10.2139/ssrn.4356640
Ni W, Li M, Cui J, Xing Z, Li Z, Wu X, Song E, Gong M, Zhou W (2017) 808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Mater Sci Eng C 81:252–260. https://doi.org/10.1016/j.msec.2017.08.020
Nicoletto RE, Ofner CM III (2022) Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol 89:285–311. https://doi.org/10.1007/s00280-022-04400-y
Nie Z, Vahdani Y, Cho WC, Bloukh SH, Edis Z, Haghighat S, Falahati M, Kheradmandi R, Jaragh-Alhadad LA, Sharifi M (2022) 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. Arab J Chem 15:103966. https://doi.org/10.1016/j.arabjc.2022.103966
Nigam S, Bahadur D (2018) Doxorubicin-loaded dendritic-Fe3O4 supramolecular nanoparticles for magnetic drug targeting and tumor regression in spheroid murine melanoma model. Nanomedicine: NBM 14:759–768. https://doi.org/10.1016/j.nano.2018.01.005
Nobahari M, Shahanipour K, Fatahian S, Monajemi R (2022) Curcumin-loaded iron oxide nanoparticles coated with sodium alginate and hydroxyapatite and their cytotoxic effects against the HT-29 and MCF-7 cancer cell lines. Jundishapur J Nat Pharm Prod 17. https://doi.org/10.5812/jjnpp.114572
Noqta OA, Aziz AA, Usman IA, Bououdina M (2019) Recent advances in iron oxide nanoparticles (IONPs): synthesis and surface modification for biomedical applications. J Supercond Nov Magn 32:779–795. https://doi.org/10.1007/s10948-018-4939-6
Nosrati H, Adibtabar M, Sharafi A, Danafar H, Hamidreza Kheiri M (2018a) PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev Ind Pharm 44:1377–1384. https://doi.org/10.1080/03639045.2018.1451881
Nosrati H, Salehiabar M, Davaran S, Danafar H, Manjili HK (2018b) Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm 44:886–894. https://doi.org/10.1080/03639045.2017.1417422
Nosrati H, Salehiabar M, Charmi J, Yaray K, Ghaffarlou M, Balcioglu E, Ertas YN (2023) Enhanced in vivo radiotherapy of breast cancer using gadolinium oxide and gold hybrid nanoparticles. ACS Appl Bio Mater 6:784–792. https://doi.org/10.1021/acsabm.2c00965
Organization WH (2023) Monitoring health for the SDGs, Sustainable Development Goals. World Health Organization, Geneva
Orrantia-Borunda E, Aguilar LEA, Valdespino CAR (2022) Nanomaterials for breast cancer. Exon Publications 149–162. https://doi.org/10.36255/exon-publications-breast-cancer-nanomaterials
Ou G, Li Z, Li D, Cheng L, Liu Z, Wu H (2016) Photothermal therapy by using titanium oxide nanoparticles. Nano Res 9:1236–1243. https://doi.org/10.1007/s12274-016-1019-8
Ozgen PSO, Atasoy S, Kurt BZ, Durmus Z, Yigit G, Dag A (2020) Glycopolymer decorated multiwalled carbon nanotubes for dual targeted breast cancer therapy. J Mater Chem B 8:3123–3137. https://doi.org/10.1039/c9tb02711d
Ozgenc E, Karpuz M, Arzuk E, Gonzalez-Alvarez M, Sanz MB, Gundogdu E, Gonzalez-Alvarez I (2022) Radiolabeled trastuzumab solid lipid nanoparticles for breast cancer cell: in vitro and in vivo studies. ACS Omega 7:30015–30027. https://doi.org/10.1021/acsomega.2c03023
Parlak C, Alver Ö (2019) Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: a comparative DFT study. J Mol Struct 1184:110–113. https://doi.org/10.1016/j.molstruc.2019.02.023
Passos JS, Lopes LB, Panitch A (2023) Collagen-binding nanoparticles for paclitaxel encapsulation and breast cancer treatment. ACS Biomater Sci Eng 9:6805–6820. https://doi.org/10.1021/acsbiomaterials.3c01332
Patel R, Klein P, Tiersten A, Sparano JA (2023) An emerging generation of endocrine therapies in breast cancer: a clinical perspective. Npj Breast Cancer 9:20. https://doi.org/10.1038/s41523-023-00523-4
Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902
Pellico J, Js R-C, Herranz F (2023) Radiolabeled iron oxide nanomaterials for multimodal nuclear imaging and positive contrast magnetic resonance imaging (MRI): a review. ACS Appl Nano Mater 6:20523–20538. https://doi.org/10.1021/acsanm.3c04269
Pennetta C, Floresta G, Graziano ACE, Cardile V, Rubino L, Galimberti M, Rescifina A, Barbera V (2020) Functionalization of single and multi-walled carbon nanotubes with polypropylene glycol decorated pyrrole for the development of doxorubicin nano-conveyors for cancer drug delivery. Nanomaterials 10:1073. https://doi.org/10.3390/nano10061073
Pérez-Herrero E, Lanier OL, Krishnan N, D’Andrea A, Peppas NA (2024) Drug delivery methods for cancer immunotherapy. Drug Deliv Transl 14:30–61. https://doi.org/10.1007/s13346-023-01405-9
Pooja D, Reddy TS, Kulhari H, Kadari A, Adams DJ, Bansal V, Sistla R (2020) N-acetyl-d-glucosamine-conjugated PAMAM dendrimers as dual receptor-targeting nanocarriers for anticancer drug delivery. Eur J Pharm Biopharm 154:377–386. https://doi.org/10.1016/j.ejpb.2020.07.020
Pourmadadi M, Yazdian F, Koulivand A, Rahmani E (2023) Green synthesized polyvinylpyrrolidone/titanium dioxide hydrogel nanocomposite modified with agarose macromolecules for sustained and pH-responsive release of anticancer drug. Int J Biol Macromol 240:124345. https://doi.org/10.1016/j.ijbiomac.2023.124345
Prevention CfDCa (2023) What are the symptoms of breast cancer? In: Prevention CfDCa (ed.) Breast Cancer screening and treatment
Pryshchepa O, Pomastowski P, Buszewski B (2020) Silver nanoparticles: synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 284:102246. https://doi.org/10.1016/j.cis.2020.102246
Pullan J, Dailey K, Bhallamudi S, Feng L, Alhalhooly L, Froberg J, Osborn J, Sarkar K, Molden T, Sathish V (2022) Modified bovine milk exosomes for doxorubicin delivery to triple-negative breast cancer cells. ACS Appl Bio Mater 5:2163–2175. https://doi.org/10.1021/acsabm.2c00015
Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, Sang DK, Xing C, Li Z, Dong B (2018) Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA 115:501–506. https://doi.org/10.1073/pnas.1714421115
Radzi MRM, Johari NA, Zawawi WFAWM, Zawawi NA, Latiff NA, Malek NANN, Wahab AA, Salim MI, Jemon K (2022) In vivo evaluation of oxidized multiwalled-carbon nanotubes-mediated hyperthermia treatment for breast cancer. Biomater Adv 134:112586. https://doi.org/10.1016/j.msec.2021.112586
Raj S, Khurana S, Choudhari R, Kesari KK, Kamal MA, Garg N, Ruokolainen J, Das BC, Kumar D (2021) Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin Cancer Biol 166–177. https://doi.org/10.1016/j.semcancer.2019.11.002
Raj Preeth D, Shairam M, Suganya N, Hootan R, Kartik R, Pierre K, Suvro C, Rajalakshmi S (2019) Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer. J Biol Inorg Chem 24:633–645. https://doi.org/10.1007/s00775-019-01676-z
Rajaei M, Rashedi H, Yazdian F, Navaei-Nigjeh M, Rahdar A, Díez-Pascual AM (2023) Chitosan/agarose/graphene oxide nanohydrogel as drug delivery system of 5-fluorouracil in breast cancer therapy. J Drug Deliv Sci Technol 82:104307. https://doi.org/10.1016/j.jddst.2023.104307
Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK (2022) Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release 352:1024–1047. https://doi.org/10.1016/j.jconrel.2022.11.009
Rajendaran K, Muthuramalingam R, Ayyadurai S (2019) Green synthesis of Ag-Mo/CuO nanoparticles using Azadirachta indica leaf extracts to study its solar photocatalytic and antimicrobial activities. Mater Sci Semicond Process 91:230–238. https://doi.org/10.1016/j.mssp.2018.11.021
Ramasami P, Bhowon MG, Laulloo SJ, Wah HLK (2019) Chemistry for a clean and healthy planet. Springer. https://doi.org/10.1007/978-3-030-20283-5
Rao J, Yang Y, Bei HP, Tang C-Y, Zhao X (2020) Antibacterial nanosystems for cancer therapy. Biomater Sci 8:6814–6824. https://doi.org/10.1039/d0bm01537g
Rawal S, Patel MM (2019) Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 301:76–109. https://doi.org/10.1016/j.jconrel.2019.03.015
Riaz R, Ali M, Anwer H, Ko MJ, Jeong SH (2019) Highly porous self-assembly of nitrogen-doped graphene quantum dots over reduced graphene sheets for photo-electrocatalytic electrode. J Colloid Interface Sci 557:174–184. https://doi.org/10.1016/j.jcis.2019.09.028
Riis M (2020) Modern surgical treatment of breast cancer. Ann Med Surg 56:95–107. https://doi.org/10.1016/j.amsu.2020.06.016
Sadhukhan P, Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, Sil PC (2019) Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng C 100:129–140. https://doi.org/10.1016/j.msec.2019.02.096
Saeed N, Hamzah I, Mahmood S (2021) The applications of nano-medicine in the breast cancer therapy. Journal of Physics: Conference Series. IOP Publishing, p. 012061. https://doi.org/10.1088/1742-6596/1853/1/012061
Salimi M, Pirouzfar V, Kianfar E (2017) Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295:215–226. https://doi.org/10.1007/s00396-016-3998-0
Salvi VR, Pawar P (2019) Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol 51:255–267. https://doi.org/10.1016/j.jddst.2019.02.017
Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 142:2217–2229. https://doi.org/10.1007/s00432-016-2179-3
Sánchez-López E, Espina M, Doktorovova S, Souto E, García M (2017) Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye–Part II-Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm 110:58–69. https://doi.org/10.1016/j.ejpb.2016.10.013
Saneja A, Kumar R, Mintoo MJ, Dubey RD, Sangwan PL, Mondhe DM, Panda AK, Gupta PN (2019) Gemcitabine and betulinic acid co-encapsulated PLGA−PEG polymer nanoparticles for improved efficacy of cancer chemotherapy. Mater Sci Eng C 98:764–771. https://doi.org/10.1016/j.msec.2019.01.026
Sankar R, Baskaran A, Shivashangari KS, Ravikumar V (2015) Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats. J Mater Sci Mater Med 26:1–7. https://doi.org/10.1007/s10856-015-5543-y
Sargazi S, Simge E, Gelen SS, Rahdar A, Bilal M, Arshad R, Ajalli N, Khan MFA, Pandey S (2022) Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: an updated and comprehensive review. J Drug Deliv Sci Technol 103605. https://doi.org/10.1016/j.jddst.2022.103605
Sarkar P, Ghosh S, Sarkar K (2021) Folic acid based carbon dot functionalized stearic acid-g-polyethyleneimine amphiphilic nanomicelle: targeted drug delivery and imaging for triple negative breast cancer. Colloids Surf B 197:111382. https://doi.org/10.1016/j.colsurfb.2020.111382
Sartaj A, Annu AM, Biswas L, Yar MS, Mir SR, Verma AK, Baboota S, Ali J (2022) Combinatorial delivery of Ribociclib and green tea extract mediated nanostructured lipid carrier for oral delivery for the treatment of breast cancer synchronising in silico, in vitro, and in vivo studies. J Drug Target 30:1113–1134. https://doi.org/10.1080/1061186x.2022.2104292
Sawasdee N, Wattanapanitch M, Thongsin N, Phanthaphol N, Chiawpanit C, Thuwajit C, Yenchitsomanus P-T, Panya A (2022) Doxorubicin sensitizes breast cancer cells to natural killer cells in connection with increased Fas receptors. Int J Mol Med 49:1–12. https://doi.org/10.3892/ijmm.2022.5095
Scioli Montoto S, Muraca G, Ruiz ME (2020) Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci 7:319. https://doi.org/10.3389/fmolb.2020.587997
Shaat H, Mostafa A, Moustafa M, Gamal-Eldeen A, Emam A, El-Hussieny E, Elhefnawi M (2016) Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. Int J Pharm 504:125–133. https://doi.org/10.1016/j.ijpharm.2016.03.051
Shakeran Z, Varshosaz J, Keyhanfar M, Mohammad-Beigi H, Rahimi K, Sutherland DS (2022) Co-delivery of STAT3 siRNA and methotrexate in breast cancer cells. Artif Cells Nanomed Biotechnol 50:29–39. https://doi.org/10.1080/21691401.2022.2030746
Shakil MS, Hasan MA, Sarker SR (2019) Iron oxide nanoparticles for breast cancer theranostics. Curr Drug Metab 20:446–456. https://doi.org/10.2174/1389200220666181122105043
Shanbhag VKL, Prasad K (2016) Graphene based sensors in the detection of glucose in saliva–a promising emerging modality to diagnose diabetes mellitus. Anal Methods 8:6255–6259. https://doi.org/10.1039/c6ay01023g
Sharma V, Mobin SM (2017) Cytocompatible peroxidase mimic CuO: graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sens Actuators B Chem 240:338–348. https://doi.org/10.1016/j.snb.2016.08.169
Sharma AR, Lee Y-H, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee S-S (2022) Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnol 20:1–21. https://doi.org/10.1186/s12951-022-01650-z
Shelat R, Chandra S, Khanna A (2018) Detailed toxicity evaluation of β-cyclodextrin coated iron oxide nanoparticles for biomedical applications. Int J Biol Macromol 110:357–365. https://doi.org/10.1016/j.ijbiomac.2017.09.067
Shen J, Karges J, Xiong K, Chen Y, Ji L, Chao H (2021) Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials 275:120979. https://doi.org/10.1016/j.biomaterials.2021.120979
Shi Z, Zhou Y, Fan T, Lin Y, Zhang H, Mei L (2020) Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater Med 1:32–47. https://doi.org/10.1016/j.smaim.2020.05.002
Shien T, Iwata H (2020) Adjuvant and neoadjuvant therapy for breast cancer. Jpn J Clin Oncol 50:225–229. https://doi.org/10.1093/jjco/hyz213
Siddique S, Chow JC (2020) Gold nanoparticles for drug delivery and cancer therapy. Appl Sci 10:3824. https://doi.org/10.3390/app10113824
Singhai NJ, Maheshwari R, Ramteke S (2020) CD44 receptor targeted ‘smart’multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloids Interface Sci Commun 35:100235. https://doi.org/10.1016/j.colcom.2020.100235
Song H, Wang Y, Wang J, Wang G, He J, Wei H, Luo S (2018) Preparation and biodistribution of 131 I-labeled graphene quantum dots. J Radioanal Nucl Chem 316:685–690. https://doi.org/10.1007/s10967-018-5804-6
Song J, Zhang B, Li M, Zhang J (2023) The current scenario of naturally occurring indole alkaloids with anticancer potential. Fitoterapia 105430. https://doi.org/10.1016/j.fitote.2023.105430
Sosa‑Acosta JR, Iriarte‑Mesa C, Ortega GA, Díaz‑García AM (2020) DNA-iron oxide nanoparticles conjugates: functional magnetic nanoplatforms in biomedical applications. Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications 19–47. https://doi.org/10.1007/s41061-019-0277-9
Sreekanth T, Nagajyothi P, Muthuraman P, Enkhtaivan G, Vattikuti S, Tettey C, Kim DH, Shim J, Yoo K (2018) Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B, Biol 188:6–11. https://doi.org/10.1016/j.jphotobiol.2018.08.013
Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5
Sun Z, Zhou D, Yang J, Zhang D (2022) Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio 12:221–230. https://doi.org/10.1002/2211-5463.13330
Tabrez S, Khan AU, Mirza AA, Suhail M, Jabir NR, Zughaibi TA, Alam M (2022) Biosynthesis of copper oxide nanoparticles and its therapeutic efficacy against colon cancer. Nanotechnol Rev 11:1322–1331. https://doi.org/10.1515/ntrev-2022-0081
Tang B, Peng Y, Yue Q, Pu Y, Li R, Zhao Y, Hai L, Guo L, Wu Y (2020) Design, preparation and evaluation of different branched biotin modified liposomes for targeting breast cancer. Eur J Med Chem 193:112204. https://doi.org/10.1016/j.ejmech.2020.112204
Thoidingjam S, Tiku AB (2017) New developments in breast cancer therapy: role of iron oxide nanoparticles. Adv Nat Sci Nanosci Nanotechnol 8:023002. https://doi.org/10.1088/2043-6254/aa5e33
Tran P, Lee S-E, Kim D-H, Pyo Y-C, Park J-S (2020) Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Investig 50:261–270. https://doi.org/10.1007/s40005-019-00459-7
Truong TH, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Muangnoi C, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P (2022) Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym 288:119401. https://doi.org/10.1016/j.carbpol.2022.119401
Turunc E, Binzet R, Gumus I, Binzet G, Arslan H (2017) Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide. Mater Chem Phys 202:310–319. https://doi.org/10.1016/j.matchemphys.2017.09.032
Ulker D, Barut I, Şener E, Bütün V (2021) Advanced liposome based PEGylated microgel as a novel release system for 5-fluorouracil against MCF-7 cancer cell. Eur Polym J 146:110270. https://doi.org/10.1016/j.eurpolymj.2021.110270
Ullah Khan M, Ullah H, Honey S, Talib Z, Abbas M, Umar AB, Ahmad T, Sohail J, Sohail A, Makgopa K (2023) Metal nanoparticles: synthesis approach, types and applications–a mini review. Nano-Horizons. https://doi.org/10.25159/nanohorizons.87a973477e35
Unterweger H, Janko C, Folk T, Cicha I, Kovács N, Gyebnár G, Horváth I, Máthé D, Zheng KH, Coolen BF (2023) Comparative in vitro and in vivo evaluation of different iron oxide-based contrast agents to promote clinical translation in compliance with patient safety. Int J Nanomedicine 2071–2086. https://doi.org/10.2147/ijn.s402320
Uram Ł, Filipowicz A, Misiorek M, Pieńkowska N, Markowicz J, Wałajtys-Rode E, Wołowiec S (2018) Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Eur J Pharm Sci 124:1–9. https://doi.org/10.1016/j.ejps.2018.08.019
Vahdat LT, Schmid P, Forero-Torres A, Blackwell K, Telli ML, Melisko M, Möbus V, Cortes J, Montero AJ, Ma C (2021) Glembatumumab vedotin for patients with metastatic, gpNMB overexpressing, triple-negative breast cancer (“METRIC”): a randomized multicenter study. NPJ Breast Cancer 7:57. https://doi.org/10.1038/s41523-021-00244-6
van Eijk M, Vermunt MA, van Werkhoven E, Wilthagen EA, Huitema AD, Beijnen JH (2022) The influence of docetaxel schedule on treatment tolerability and efficacy in patients with metastatic breast cancer: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer 22:1–10. https://doi.org/10.1186/s12885-022-09196-x
Vandebriel RJ, Vermeulen JP, van Engelen LB, de Jong B, Verhagen LM, de la Fonteyne-Blankestijn LJ, Hoonakker ME, de Jong WH (2018) The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part Fibre Toxicol 15:1–12. https://doi.org/10.1186/s12989-018-0245-5
Vargas-Bernal R (2020) Introductory chapter: hybrid nanomaterials. Hybrid Nanomaterials-Flexible Electronics Materials. IntechOpen. https://doi.org/10.5772/intechopen.92012
Vasantharaj S, Sathiyavimal S, Saravanan M, Senthilkumar P, Gnanasekaran K, Shanmugavel M, Manikandan E, Pugazhendhi A (2019) Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B, Biol 191:143–149. https://doi.org/10.1016/j.jphotobiol.2018.12.026
Vijayakumar S, Krishnakumar C, Arulmozhi P, Mahadevan S, Parameswari N (2018) Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb Pathog 116:44–48. https://doi.org/10.1016/j.micpath.2018.01.003
Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA (2017) Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine 3941–3965. https://doi.org/10.2147/ijn.s134526
Vinciguerra D, Jacobs M, Denis S, Mougin J, Guillaneuf Y, Lazzari G, Zhu C, Mura S, Couvreur P, Nicolas J (2019) Heterotelechelic polymer prodrug nanoparticles: adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. J Control Release 295:223–236. https://doi.org/10.1016/j.jconrel.2018.12.047
Wang L (2017) Early Diagnosis of Breast Cancer. Sensors 17:1572. https://doi.org/10.3390/s17071572
Wang C, Jin J, Sun Y, Yao J, Zhao G, Liu Y (2017a) In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. J Chem Eng 327:774–782. https://doi.org/10.1016/j.cej.2017.06.163
Wang Q, Alshaker H, Böhler T, Srivats S, Chao Y, Cooper C, Pchejetski D (2017b) Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep 7:5901. https://doi.org/10.1038/s41598-017-06142-x
Wang W, Wang J, Ding Y (2020) Gold nanoparticle-conjugated nanomedicine: design, construction, and structure–efficacy relationship studies. J Mater Chem B 8:4813–4830. https://doi.org/10.1039/c9tb02924a
Wang Y, Yang Q-W, Yang Q, Zhou T, Shi M-F, Sun C-X, Gao X-X, Cheng Y-Q, Cui X-G, Sun Y-H (2017c) Cuprous oxide nanoparticles inhibit prostate cancer by attenuating the stemness of cancer cells via inhibition of the Wnt signaling pathway. Int J Nanomedicine 2569–2579. https://doi.org/10.2147/ijn.s130537
Wong SK, Zainol I, Ng MP, Ng CH, Ooi IH (2020) Dendrimer-like AB 2-type star polymers as nanocarriers for doxorubicin delivery to breast cancer cells: synthesis, characterization, in-vitro release and cytotoxicity studies. J Polym Res 27:1–19. https://doi.org/10.1007/s10965-020-02089-2
Wu Y, Wang H, Gao F, Xu Z, Dai F, Liu W (2018) An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions. Adv Funct Mater 28:1801000. https://doi.org/10.1002/adfm.201801000
Xu F (2018) Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere 212:662–677. https://doi.org/10.1016/j.chemosphere.2018.08.108
Xu Y, Hu X, Guan P, Du C, Tian Y, Ding S, Li Z, Yan C (2019) A novel controllable molecularly imprinted drug delivery system based on the photothermal effect of graphene oxide quantum dots. J Mater Sci 54:9124–9139. https://doi.org/10.1007/s10853-019-03500-0
Xu D, Li E, Karmakar B, Awwad NS, Ibrahium HA, Osman H-EH, El-kott AF, Abdel-Daim MM (2022a) Green preparation of copper nanoparticle-loaded chitosan/alginate bio-composite: Investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. Arab J Chem 15:103638. https://doi.org/10.1016/j.arabjc.2021.103638
Xu J-R, Xie Y, Li J-W, Liu R, Chen M, Ren Y-X, Luo Q, Duan J-L, Bao C-J, Liu Y-X (2022b) Development of fullerene nanospherical miRNA and application in overcoming resistant breast cancer. Mater Today Chem 26:101019. https://doi.org/10.1016/j.mtchem.2022.101019
Xu L, Xu M, Sun X, Feliu N, Feng L, Parak WJ, Liu S (2023) Quantitative comparison of gold nanoparticle delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano 17:2039–2052. https://doi.org/10.1021/acsnano.2c07295
Xu P, Yao J, Li Z, Wang M, Zhou L, Zhong G, Zheng Y, Li N, Zhai Z, Yang S (2020) Therapeutic effect of doxorubicin-chlorin E6-loaded mesoporous silica nanoparticles combined with ultrasound on triple-negative breast cancer. Int J Nanomedicine 2659–2668. https://doi.org/10.2147/ijn.s243037
Xue Y (2017) Carbon nanotubes for biomedical applications. Industrial Applications of Carbon Nanotubes. Elsevier, pp. 323–346. https://doi.org/10.1016/b978-0-323-41481-4.00011-3
Xue Y, Yu G, Shan Z, Li Z (2018) Phyto-mediated synthesized multifunctional Zn/CuO NPs hybrid nanoparticles for enhanced activity for kidney cancer therapy: a complete physical and biological analysis. J Photochem Photobiol B, Biol 186:131–136
Yan S, Zhao P, Yu T, Gu N (2019) Current applications and future prospects of nanotechnology in cancer immunotherapy. Cancer Biol Med 16:486. https://doi.org/10.1016/j.jphotobiol.2018.07.004
Yan Y, Liu Y, Li T, Liang Q, Thakur A, Zhang K, Liu W, Xu Z, Xu Y (2023) Functional roles of magnetic nanoparticles for the identification of metastatic lymph nodes in cancer patients. J Nanobiotechnol 21:337. https://doi.org/10.1186/s12951-023-02100-0
Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, Liang X (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:1–10. https://doi.org/10.1186/s13046-018-0909-x
Yang L, Zhang Y, Zhang Y, Xu Y, Li Y, Xie Z, Wang H, Lin Y, Lin Q, Gong T (2022) Live macrophage-delivered doxorubicin-loaded liposomes effectively treat triple-negative breast cancer. ACS Nano 16:9799–9809. https://doi.org/10.1021/acsnano.2c03573
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193. https://doi.org/10.3389/fmolb.2020.00193
Yaqoob AA, Umar K, Ibrahim MNM (2020) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci 10:1369–1378. https://doi.org/10.1007/s13204-020-01318-w
Yari H, Nkepang G, Awasthi V (2019) Surface modification of liposomes by a lipopolymer targeting prostate specific membrane antigen for theranostic delivery in prostate cancer. Materials 12:756. https://doi.org/10.3390/ma12050756
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O (2020) Therapeutic nanoparticles and their targeted delivery applications. Molecules 25:2193. https://doi.org/10.3390/molecules25092193
Yousefian Z, Ghasemy E, Askarieh M, Rashidi A (2019) Theoretical studies on B, N, P, S, and Si doped fullerenes toward H2S sensing and adsorption. Phys E Low Dimens Syst Nanostruct 114:113626. https://doi.org/10.1016/j.physe.2019.113626
Yurt F, Ocakoglu K, Ince M, Colak SG, Er O, Soylu HM, Gunduz C, Biray Avci C, Caliskan Kurt C (2018) Photodynamic therapy and nuclear imaging activities of zinc phthalocyanine-integrated TiO2 nanoparticles in breast and cervical tumors. Chem Biol Drug Des 91:789–796. https://doi.org/10.1111/cbdd.13144
Zahn D, Landers J, Buchwald J, Diegel M, Salamon S, Müller R, Köhler M, Ecke G, Wende H, Dutz S (2022) Ferrimagnetic large single domain iron oxide nanoparticles for hyperthermia applications. Nanomaterials 12:343. https://doi.org/10.3390/nano12030343
Zamani M, Rostami M, Aghajanzadeh M, Kheiri Manjili H, Rostamizadeh K, Danafar H (2018) Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J Mater Sci 53:1634–1645. https://doi.org/10.1007/s10853-017-1673-6
Zaręba N, Więcławik K, Kizek R, Hosnedlova B, Kepinska M (2022) The impact of fullerenes as doxorubicin nano-transporters on metallothionein and superoxide dismutase status in MCF-10A cells. Pharmaceutics 14:102. https://doi.org/10.3390/pharmaceutics14010102
Zeng X, Liu G, Tao W, Ma Y, Zhang X, He F, Pan J, Mei L, Pan G (2017) A drug-self-gated mesoporous antitumor nanoplatform based on pH-sensitive dynamic covalent bond. Adv Funct Mater 27:1605985. https://doi.org/10.1002/adfm.201605985
Zeynalzadeh S, Dehghani E, Hassani A, Baradar Khoshfetrat A, Salami-Kalajahi M (2023) Effect of curcumin-loaded poly (amidoamine) dendrimer on cancer cell lines: a comparison between physical loading and chemical conjugation of drug. Polym. Bull 1–14. https://doi.org/10.1007/s00289-023-04783-9
Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534. https://doi.org/10.3390/ijms17091534
Zhang D, Ramachandran G, Mothana RA, Siddiqui NA, Ullah R, Almarfadi OM, Rajivgandhi G, Manoharan N (2020a) Biosynthesized silver nanoparticles using Caulerpa taxifolia against A549 lung cancer cell line through cytotoxicity effect/morphological damage. Saudi J Biol Sci 27:3421–3427. https://doi.org/10.1016/j.sjbs.2020.09.017
Zhang M, Chen X, Li C, Shen X (2020b) Charge-reversal nanocarriers: an emerging paradigm for smart cancer nanomedicine. J Control Release 319:46–62. https://doi.org/10.1016/j.jconrel.2019.12.024
Zhang Y, Yue S, Haag R, Sun H, Zhong Z (2021) An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer. J Control Release 340:331–341. https://doi.org/10.1016/j.jconrel.2021.11.014
Zhang J, McAndrew NP, Wang X, Du Y, DiCarlo B, Wang M, Chen K, Yu W, Hu X (2023) Preclinical and clinical activity of DZD1516, a full blood–brain barrier-penetrant, highly selective HER2 inhibitor. Breast Cancer Res 25:81. https://doi.org/10.1186/s13058-023-01679-4
Zhao X, Li F, Li Y, Wang H, Ren H, Chen J, Nie G, Hao J (2015) Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 46:13–25. https://doi.org/10.1016/j.biomaterials.2021.121296
Zhao Y, Li X, Zhao X, Yang Y, Li H, Zhou X, Yuan W (2017) Asymmetrical polymer vesicles for drug delivery and other applications. Front Pharmacol 8:374. https://doi.org/10.3389/fphar.2017.00374
Zheng X, Wu F, Lin X, Shen L, Feng Y (2018) Developments in drug delivery of bioactive alkaloids derived from traditional Chinese medicine. Drug Deliv 25:398–416. https://doi.org/10.1080/10717544.2018.1431980
Zheng N, Yan J, Qian W, Song C, Zuo Z, He C (2021) Comparison of developmental toxicity of different surface modified CdSe/ZnS QDs in zebrafish embryos. J Environ Sci 100:240–249. https://doi.org/10.1016/j.jes.2020.07.019
Zhi D, Yang T, Yang J, Fu S, Zhang S (2020) Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater 102:13–34. https://doi.org/10.1016/j.actbio.2019.11.027
Zhong Z, Liu C, Xu Y, Si W, Wang W, Zhong L, Zhao Y, Dong X (2022) γ-Fe2O3 loading Mitoxantrone and glucose oxidase for pH-responsive chemo/chemodynamic/photothermal synergistic cancer therapy. Adv Healthc Mater 11:2102632. https://doi.org/10.1002/adhm.202301901
Zhou M, Yuan M, Zhang M, Lei C, Aras O, Zhang X, An F (2021) Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur J Med Chem 226:113825. https://doi.org/10.1016/j.ejmech.2021.113825
Zhou X-Q, Hayat Z, Zhang D-D, Li M-Y, Hu S, Wu Q, Cao Y-F, Yuan Y (2023) Zinc Oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture. Processes 11:1193. https://doi.org/10.3390/pr11041193
Zhu D, Zhang H, Huang Y, Lian B, Ma C, Han L, Chen Y, Wu S, Li N, Zhang W (2021) A self-assembling amphiphilic peptide dendrimer-based drug delivery system for cancer therapy. Pharmaceutics 13:1092. https://doi.org/10.3390/pharmaceutics13071092
Zulfiker M, Midhun M, Rajappan S, Sreedharan S, Deeshma RK, Binub K (2022) Nanoparticles: tech trends in healthcare. J Res Med Sci 10:1. https://doi.org/10.3390/molecules28186624
Author information
Authors and Affiliations
Contributions
Shima and Hossein Ali hypothesizad the idea of this manuscript. Shima and Mehran prepared the initial design of this review article. All the members of the group prepared the contents of different sections together with the coordinator. Sodabeh and Hossein Ali have designed the figures, and Amin helped in answering in review process of the article. Shima and Rasool proofread the final version of the article. All authors read and approved the manuscript. The authors confirm that no paper mill and artificial intelligence was used.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bourang, S., Noruzpour, M., Jahanbakhsh Godekahriz , S. et al. Application of nanoparticles in breast cancer treatment: a systematic review. Naunyn-Schmiedeberg's Arch Pharmacol 397, 6459–6505 (2024). https://doi.org/10.1007/s00210-024-03082-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00210-024-03082-y