Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Selection and identification of ssDNA aptamers recognizing zearalenone

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium graminearum on maize and barley. Because most current methods of ZEN detection rely on the use of low-stability antibodies or expensive equipment, we sought to develop a rapid, low-cost determination method using aptamers instead of antibodies as the specific recognition ligands. This work describes the isolation and identification of single-stranded DNA (ssDNA) aptamers recognizing ZEN using the modified systematic evolution of ligands by exponential enrichment methodology based on magnetic beads. After 14 rounds of repeated selection, a highly enriched ssDNA library was sequenced and 12 representative sequences were assayed for their affinity and specificity. The best aptamer, 8Z31, with a dissociation constant (K d) of 41 ± 5 nM, was successfully applied in the specific detection of ZEN in binding buffer and in real samples based on a magnetic separation/preconcentration procedure. This analytical method provided a linear range from 3.14 × 10−9 to 3.14 × 10−5 M for ZEN, and the detection limit was 7.85 × 10−10 M. The selected aptamers are expected to be used in the potential development of affinity columns, biosensors, or other analytical systems for the determination of ZEN in food and agricultural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    Article  CAS  Google Scholar 

  2. Diebold GJ, Karny N, Zare RN (1979) Determination of zearalenone in corn by laser fluorimetry. Anal Chem 51:67–69

    Article  CAS  Google Scholar 

  3. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  Google Scholar 

  4. Liu G, Han Z, Nie DX, Yang JH, Zhao ZH, Zhang JB, Li HP, Liao YC, Song SQ, Saegerc SD, Wu AB (2012) Rapid and sensitive quantitation of zearalenone in food and feed by lateral flow immunoassay. Food Control 27:200–205

    Article  CAS  Google Scholar 

  5. Shim WB, Dzantiev BB, Eremin SA, Chung DH (2009) One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin A and zearalenone. J Microbiol Biotechnol 19:83–92

    CAS  Google Scholar 

  6. Abbes S, Quanes Z, Salah-Abbes JB, Abdel-Wahhab MA, Oueslati R, Bacha H (2007) Preventive role of aluminosilicate clay against induction of micronuclei and chromosome aberrations in bone-marrow cells of Balb/c mice treated with zearalenone. Mutat Res Gen Toxicol Environ 21:136–144

    Google Scholar 

  7. Abid-Essefi S, Baudrimont I, Hassen W, Ouanes Z, Mobio TA, Anane R, Creppy EE, Bacha H (2003) DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by vitamin E. Toxicology 192:237–248

    Article  CAS  Google Scholar 

  8. Boussema-Ayed I, Ouanes Z, Bacha H, Abid S (2007) Toxicities induced in cultured cells exposed to zearalenone: apoptosis or mutagenesis? J Biochem Mol Toxicol 21:136–144

    Article  Google Scholar 

  9. Ouanes Z, Abid S, Ayed I, Anane R, Mobio T, Creppy EE, Bacha H (2003) Induction of micronuclei by zearalenone in Vero monkey kidney cells and in bone marrow cells of mice: protective effect of vitamin E. Mutat Res Gen Toxicol Environ 538:63–70

    Article  CAS  Google Scholar 

  10. Huang ZB, Xu Y, Li LS, Li YP, Zhang H, He QH (2012) Development of an immunochromatographic strip test for the rapid simultaneous detection of deoxynivalenol and zearalenone in wheat and maize. Food Control 28:7–12

    Article  CAS  Google Scholar 

  11. Majerus P, Graf N, Krämer M (2009) Rapid determination of zearalenone in edible oils by HPLC with fluorescence detection. Mycotoxin Res 25:117–121

    Article  CAS  Google Scholar 

  12. Pallaroni L, Bjorklund E, Von HC (2002) Optimization of atmospheric pressure chemical ionization interface parameters for the simultaneous determination of deoxynivalenol and zearalenone using HPLC/MS. J Liq Chromatogr Relat Technol 25(6):913–926

    Article  CAS  Google Scholar 

  13. Biselli S, Wegner H, Hummert C (2005) A multicomponent method for Fusarium toxins in cereal based food and feed samples using HPLC-MS/MS. Mycotoxin Res 21(1):18–22

    Article  CAS  Google Scholar 

  14. Burmistrova NA, Goryacheva IY, Basova EY, Franki AS, Elewaut D, Beneden KV, Deforce D, Peteghem CV, Saeger SD (2009) Application of a new anti-zearalenone monoclonal antibody in different immunoassay formats. Anal Bioanal Chem 395:1301–1307

    Article  CAS  Google Scholar 

  15. Shim W-B, Dzantiev BB, Eremin SA, Chung DH (2009) One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin A and zearalenone. J Microbiol Biotechnol 19(1):83–92

    CAS  Google Scholar 

  16. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  17. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  18. He J, Liu Y, Fan MT, Liu XJ (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59:1582–1586

    Article  CAS  Google Scholar 

  19. Rajendran M, Ellington AD (2008) Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal Bioanal Chem 390:1067–1075

    Article  CAS  Google Scholar 

  20. Ylera F, Lurz R, Erdmann VA, Furste JP (2002) Selection of RNA aptamers to the Alzheimer’s disease amyloid peptide. Biochem Biophys Res Commun 290:1583–1588

    Article  CAS  Google Scholar 

  21. Ferreira CSM, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S (2008) DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal Bioanal Chem 390:1039–1050

    Article  CAS  Google Scholar 

  22. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  CAS  Google Scholar 

  23. Müller J, El-Maarri O, Oldenburg J, Pötzsch B, Mayer G (2008) Monitoring the progression of the in vitro selection of nucleic acid aptamers by denaturing high-performance liquid chromatography. Anal Bioanal Chem 390:1033–1037

    Article  Google Scholar 

  24. Duan N, Wu SJ, Chen XJ, Huang YK, Wang ZP (2012) Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus. J Agric Food Chem 60:4034–4038

    Article  CAS  Google Scholar 

  25. Labib M, Zamay AS, Muharemagic D, Chechik AV, Bell JC, Berezovski MV (2012) Electrochemical differentiation of epitope-specific aptamers. Anal Chem 84:2548–2556

    Article  CAS  Google Scholar 

  26. Tang ZW, Shangguan DH, Wang KH, Shi K, Sefah K, Mallikratchy P, Chen HW, Li Y, Tan WH (2007) Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem 79:4900–4907

    Article  CAS  Google Scholar 

  27. Fang XH, Tan WH (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43:48–57

    Article  CAS  Google Scholar 

  28. Cerchia L, Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    Article  CAS  Google Scholar 

  29. Cruz-Aguado JA, Penner G (2008) Determination of ochratoxin A with a DNA aptamer. J Agric Food Chem 56:10456–10461

    Article  CAS  Google Scholar 

  30. McKeague M, Bradley CR, Girolamo AD, Visconti A, Miller JD, DeRosa MC (2010) Screening and initial binding assessment of Fumonisin B1 aptamers. Int J Mol Sci 11:4864–4881

    Article  CAS  Google Scholar 

  31. Bonel L, Vidal JC, Duato P, Castillo JR (2011) An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens Bioelectron 26:3254–3259

    Article  CAS  Google Scholar 

  32. Wu SJ, Duan N, Ma XY, Xia Y, Wang HX, Wang ZP, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84:6263–6270

    Article  CAS  Google Scholar 

  33. Hun X, Liu F, Mei ZH, Ma LF, Wang ZP, Luo XL (2013) Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosens Bioelectron 39:145–151

    Article  Google Scholar 

  34. Duan N, Wu SJ, Zhu CQ, Ma XY, Wang M, Wang ZP, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functional magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6

    Article  CAS  Google Scholar 

  35. Wang LY, Bao J, Wang L, Zhang F, Li YD (2006) One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J 12:6341–6347

    Article  CAS  Google Scholar 

  36. Thouvenot D, Morfin RF (1983) Radioimmunoassay for zearalenone and zearalanol in human serum: production, properties, and use of porcine antibodies. Appl Environ Microbiol 45:16–23

    CAS  Google Scholar 

  37. Lu HC, Yi GS, Zhao SY, Chen DP, Guo LH, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14:1336–1341

    Article  CAS  Google Scholar 

  38. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Science and Technology Supporting Project of Jiangsu Province (BE2011621, BE2010679), the National S&T Support Program of China (2012BAK08B01), the Research Fund for the Doctoral Program of Higher Education (20110093110002), JUSRP51309A, and NCET-11-0663.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Huang, Y., Duan, N. et al. Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem 405, 6573–6581 (2013). https://doi.org/10.1007/s00216-013-7085-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7085-9

Keywords

Navigation