Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We have proposed a new mannan catabolic pathway in Bacteroides fragilis NCTC 9343 that involves a putative mannanase ManA in glycoside hydrolase family 26 (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772). If this hypothesis is correct, ManA has to generate mannobiose from mannans as the major end product. In this study, the BF0771 gene from the B. fragilis genome was cloned and expressed in Escherichia coli cells. The expressed protein was found to produce mannobiose exclusively from mannans and initially from manno-oligosaccharides. Production of 4-O-β-d-glucopyranosyl-d-mannose or 4-O-β-d-mannopyranosyl-d-glucose from mannans was not detectable. The results indicate that this enzyme is a novel mannobiose-forming exo-mannanase, consistent with the new microbial mannan catabolic pathway we proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Bolam DN, Xie H, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ (2001) Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Biochemistry 40:2468–2477

    Article  CAS  PubMed  Google Scholar 

  • Boraston AB, Revett TJ, Boraston CM, Nurizzo D, Davies GJ (2003) Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure 11:665–675

    Article  CAS  PubMed  Google Scholar 

  • Braithwaite KL, Black GW, Hazlewood GP, Ali BR, Gilbert HJ (1995) A non-modular endo-β-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J 305:1005–1010

    CAS  PubMed  Google Scholar 

  • Cartmell A, Topakas E, Ducros VM, Suits MD, Davies GJ, Gilbert HJ (2008) The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem 283:34403–34413

    Article  CAS  PubMed  Google Scholar 

  • Centeno MSJ, Guerreiro CIPD, Dias FMV, Morland C, Tailford LE, Goyal A, Prates JAM, Ferreira LMA, Caldeira RMH, Mongodin EF, Nelson KE, Gilbert HJ, Fontes CMGA (2006) Galactomannan hydrolysis and mannose metabolismin Cellvibrio mixtus. FEMS Microbiol Lett 261:123–132

    Article  CAS  PubMed  Google Scholar 

  • Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B, Quail MA, Barron A, Clark L, Corton C, Doggett J, Holden MT, Larke N, Line A, Lord A, Norbertczak H, Ormond D, Price C, Rabbinowitsch E, Woodward J, Barrell B, Parkhill J (2005) Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465

    Article  PubMed  Google Scholar 

  • Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson J, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE (2008) Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 190:5455–5463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dias FMV, Vincent F, Pell G, Prates JAM, Centeno MSJ, Tailford LE, Ferreira LMA, Fontes CMGA, Davies GJ, Gilbert HJ (2004) Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J Biol Chem 279:25517–25526

    Article  CAS  PubMed  Google Scholar 

  • Halstead JR, Vercoe PE, Gilbert HJ, Davidson K, Hazlewood GP (1999) A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 145:3101–3108

    CAS  PubMed  Google Scholar 

  • Hatada Y, Takeda N, Hirasawa K, Ohta Y, Usami R, Yoshida Y, Grant WD, Ito S, Horikoshi K (2005) Sequence of the gene for a high-alkaline mannanase from an alkaliphilic Bacillus sp. Strain JAMB-750, its expression in Bacillus subtilis and characterization of the recombinant enzyme. Extremophiles 9:497–500

    Article  CAS  PubMed  Google Scholar 

  • Hogg D, Pell G, Dupree P, Goubet F, Martín-Orúe SM, Armand S, Gilbert HJ (2005) The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 371:1027–1043

    Article  Google Scholar 

  • Ito S (2009) Features and applications of microbial sugar epimerases. Appl Microbiol Biotechnol 84:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Hamada S, Yamaguchi K, Umene S, Ito H, Matsui H, Ozawa T, Taguchi H, Watanabe J, Wasaki J, Ito S (2007) Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus. Biochem Biophys Res Commun 360:640–645

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Taguchi H, Hamada S, Kawauchi S, Ito H, Senoura T, Watanabe J, Nishimukai M, Ito S, Matsui H (2008) Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl Microbiol Biotechnol 79:433–441

    Article  CAS  PubMed  Google Scholar 

  • Le Nours J, Anderson L, Stoll D, Stålbrand H, Leggio L (2005) The structure and characterization of a modular endo-β-1,4-mannanase from Cellulomonas fimi. Biochemistry 44:12700–12708

    Article  PubMed  Google Scholar 

  • McCleary BV (1988) Carob and guar galactomannans. Methods Enzymol 160:523–527

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 3:426–428

    Article  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  PubMed  Google Scholar 

  • Senoura T, Taguchi H, Ito S, Hamada S, Matsui H, Watanabe J, Wasaki J, Ito S (2009) Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343. Biosci Biotechnol Biochem 72:400–406

    Article  Google Scholar 

  • Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S, Watanabe J, Wasaki J, Ito S (2011) New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem Biophys Res Commun 408:701–706

    Article  CAS  PubMed  Google Scholar 

  • Stoll D, Stålbrand H, Warren RA (1999) Mannan-degrading enzymes from Cellulomonas fimi. Appl Environ Microbiol 65:2598–2605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tailford LE, Money VA, Smith NL, Dumon C, Davies GJ, Gilbert HJ (2007) Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the β-mannosidase, BtMan2A. J Biol Chem 282:11291–11299

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Ito.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaguchi, K., Senoura, T., Ito, S. et al. The mannobiose-forming exo-mannanase involved in a new mannan catabolic pathway in Bacteroides fragilis . Arch Microbiol 196, 17–23 (2014). https://doi.org/10.1007/s00203-013-0938-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0938-y

Keywords

Navigation