Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let \(A, B \in \mathbb {K} [X, Y]\) be two bivariate polynomials over an effective field \(\mathbb {K}\), and let G be the reduced Gröbner basis of the ideal \(I :=\langle A, B \rangle \) generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of \(P \in \mathbb {K} [X, Y]\) modulo G, where “quasi-optimal” is meant in terms of the size of the input ABP. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra \(\mathbb {A} :=\mathbb {K} [X, Y] / \langle A, B \rangle \), both in quasi-linear time. Moreover, we show that G itself can be computed in quasi-linear time with respect to the output size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The results from [18] actually apply for more general types of supports, but this will not be needed in this paper.

References

  1. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5 Gröbner basis algorithm. J. Symb. Comput. 70, 1–24 (2014)

    MATH  Google Scholar 

  2. Becker, T., Weispfenning, V.: Gröbner bases: a computational approach to commutative algebra. In: Axler, S., Gehring, F.W., Ribet, K.A. (eds.) Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)

    Chapter  Google Scholar 

  3. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Universitat Innsbruck, Austria (1965)

  4. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28(7), 693–701 (1991)

    Article  MathSciNet  Google Scholar 

  5. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  6. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC’02, pp. 75–83. ACM, New York (2002)

  7. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Polynomial systems solving by fast linear algebra. arXiv:1304.6039 (2013)

  8. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  Google Scholar 

  9. Fischer, M.J., Stockmeyer, L.J.: Fast on-line integer multiplication. In: Proceedings of the 5th ACM Symposium on Theory of Computing, vol. 9, pp. 67–72 (1974)

  10. Fröberg, R., Hollman, J.: Hilbert series for ideals generated by generic forms. J. Symb. Comput. 17(2), 149–157 (1994)

    Article  MathSciNet  Google Scholar 

  11. Galligo, A.: A propos du théoreme de préparation de Weierstrass. In: Norguet, F. (ed.) Fonctions de plusieurs Variables Complexes, pp. 543–579. Springer, Berlin (1974)

    Google Scholar 

  12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2013)

  13. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45(5), 519–541 (1998)

    Article  MathSciNet  Google Scholar 

  14. Harvey, D., van der Hoeven, J.: Faster polynomial multiplication over finite fields using cyclotomic coefficient rings. J. Complex (in press). https://doi.org/10.1016/j.jco.2019.03.004

    Article  MathSciNet  Google Scholar 

  15. Harvey, D., van der Hoeven, J., Lecerf, G.: Faster polynomial multiplication over finite fields. J. ACM 63(6), 52 (2017)

    Article  MathSciNet  Google Scholar 

  16. van der Hoeven, J.: Relax, but don’t be too lazy. JSC 34, 479–542 (2002)

    MathSciNet  MATH  Google Scholar 

  17. van der Hoeven, J.: Faster relaxed multiplication. In: Proceeding of the ISSAC’14, pp. 405–412, Kobe (July 2014)

  18. van der Hoeven, J.: On the complexity of polynomial reduction. In: Kotsireas, I., Martínez-Moro, E. (eds.) Proceeding of the Applications of Computer Algebra 2015, Volume 198 of Springer Proceedings in Mathematics and Statistics, pp. 447–458. Springer, Cham (2015)

    Google Scholar 

  19. van der Hoeven, J., Larrieu, R.: Fast reduction of bivariate polynomials with respect to sufficiently regular Gröbner bases. In: Kauers, M., Ovchinnikov, A., Schost, É. (eds.) Proceeding of the ISSAC’18, pp. 199–206. ACM, New York (2018)

    Google Scholar 

  20. van der Hoeven, J., Schost, É.: Multi-point evaluation in higher dimensions. AAECC 24(1), 37–52 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lebreton, R., Schost, E., Mehrabi, E.: On the complexity of solving bivariate systems: the case of non-singular solutions. In: ISSAC: International Symposium on Symbolic and Algebraic Computation, pp. 251–258, Boston (June 2013)

  22. Mayr, E.: Membership in polynomial ideals over \(Q\) is exponential space complete. STACS 89, 400–406 (1989)

    MathSciNet  Google Scholar 

  23. Moreno-Socías, G.: Degrevlex Gröbner bases of generic complete intersections. J. Pure Appl. Algebra 180(3), 263–283 (2003)

    Article  MathSciNet  Google Scholar 

  24. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf. 7, 395–398 (1977)

    Article  Google Scholar 

  25. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)

    Article  MathSciNet  Google Scholar 

  26. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.0) (2017). https://www.sagemath.org

Download references

Acknowledgements

We thank Vincent Neiger for a remark that simplified Algorithm 6. We also thank the anonymous referees for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris van der Hoeven.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Hoeven, J., Larrieu, R. Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals. AAECC 30, 509–539 (2019). https://doi.org/10.1007/s00200-019-00389-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-019-00389-9

Keywords

Mathematics Subject Classification

Navigation