Abstract
Let \(A, B \in \mathbb {K} [X, Y]\) be two bivariate polynomials over an effective field \(\mathbb {K}\), and let G be the reduced Gröbner basis of the ideal \(I :=\langle A, B \rangle \) generated by A and B with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of \(P \in \mathbb {K} [X, Y]\) modulo G, where “quasi-optimal” is meant in terms of the size of the input A, B, P. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra \(\mathbb {A} :=\mathbb {K} [X, Y] / \langle A, B \rangle \), both in quasi-linear time. Moreover, we show that G itself can be computed in quasi-linear time with respect to the output size.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The results from [18] actually apply for more general types of supports, but this will not be needed in this paper.
References
Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5 Gröbner basis algorithm. J. Symb. Comput. 70, 1–24 (2014)
Becker, T., Weispfenning, V.: Gröbner bases: a computational approach to commutative algebra. In: Axler, S., Gehring, F.W., Ribet, K.A. (eds.) Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Universitat Innsbruck, Austria (1965)
Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28(7), 693–701 (1991)
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC’02, pp. 75–83. ACM, New York (2002)
Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Polynomial systems solving by fast linear algebra. arXiv:1304.6039 (2013)
Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)
Fischer, M.J., Stockmeyer, L.J.: Fast on-line integer multiplication. In: Proceedings of the 5th ACM Symposium on Theory of Computing, vol. 9, pp. 67–72 (1974)
Fröberg, R., Hollman, J.: Hilbert series for ideals generated by generic forms. J. Symb. Comput. 17(2), 149–157 (1994)
Galligo, A.: A propos du théoreme de préparation de Weierstrass. In: Norguet, F. (ed.) Fonctions de plusieurs Variables Complexes, pp. 543–579. Springer, Berlin (1974)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2013)
Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45(5), 519–541 (1998)
Harvey, D., van der Hoeven, J.: Faster polynomial multiplication over finite fields using cyclotomic coefficient rings. J. Complex (in press). https://doi.org/10.1016/j.jco.2019.03.004
Harvey, D., van der Hoeven, J., Lecerf, G.: Faster polynomial multiplication over finite fields. J. ACM 63(6), 52 (2017)
van der Hoeven, J.: Relax, but don’t be too lazy. JSC 34, 479–542 (2002)
van der Hoeven, J.: Faster relaxed multiplication. In: Proceeding of the ISSAC’14, pp. 405–412, Kobe (July 2014)
van der Hoeven, J.: On the complexity of polynomial reduction. In: Kotsireas, I., Martínez-Moro, E. (eds.) Proceeding of the Applications of Computer Algebra 2015, Volume 198 of Springer Proceedings in Mathematics and Statistics, pp. 447–458. Springer, Cham (2015)
van der Hoeven, J., Larrieu, R.: Fast reduction of bivariate polynomials with respect to sufficiently regular Gröbner bases. In: Kauers, M., Ovchinnikov, A., Schost, É. (eds.) Proceeding of the ISSAC’18, pp. 199–206. ACM, New York (2018)
van der Hoeven, J., Schost, É.: Multi-point evaluation in higher dimensions. AAECC 24(1), 37–52 (2013)
Lebreton, R., Schost, E., Mehrabi, E.: On the complexity of solving bivariate systems: the case of non-singular solutions. In: ISSAC: International Symposium on Symbolic and Algebraic Computation, pp. 251–258, Boston (June 2013)
Mayr, E.: Membership in polynomial ideals over \(Q\) is exponential space complete. STACS 89, 400–406 (1989)
Moreno-Socías, G.: Degrevlex Gröbner bases of generic complete intersections. J. Pure Appl. Algebra 180(3), 263–283 (2003)
Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf. 7, 395–398 (1977)
Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)
The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.0) (2017). https://www.sagemath.org
Acknowledgements
We thank Vincent Neiger for a remark that simplified Algorithm 6. We also thank the anonymous referees for helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
van der Hoeven, J., Larrieu, R. Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals. AAECC 30, 509–539 (2019). https://doi.org/10.1007/s00200-019-00389-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-019-00389-9