Abstract
The multiplicity of a weight \(\mu \) in an irreducible representation of a simple Lie algebra \(\mathfrak {g}\) with highest weight \(\lambda \) can be computed via the use of Kostant’s weight multiplicity formula. This formula is an alternating sum over the Weyl group and involves the computation of a partition function. In this paper we consider a q-analog of Kostant’s weight multiplicity and present a SageMath program to compute q-multiplicities for the simple Lie algebras.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Baldoni, W., Beck, M., Cochet, C., Vergne, M.: Volume computation for polytopes and partition functions for classical root systems. Discret. Comput. Geom. 35(4), 551–595 (2006)
Baldoni, W., Vergne, M.: Kostant partitions functions and flow polytopes. Transform. Groups 13(3–4), 447–469 (2008)
Barvinok, A.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)
Barvinok, A.: Lattice points and lattice polytopes. In: Handbook of Discrete and Computational Geometry, CRC Press Ser. Discrete Math. Appl., pp. 133–152. CRC, Boca Raton (1997). ,
Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in polyhedra. In New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97). Volume 38 of Math. Sci. Res. Inst. Publ., pp. 91–147. Cambridge University Press, Cambridge (1999)
Berenstein, A.D., Zelevinsky, A.V.: Tensor product multiplicities and convex polytopes in partition space. J. Geom. Phys. 5(3), 453–472 (1988)
Billey, S., Guillemin, V., Rassart, E.: A vector partition function for the multiplicities of \(\mathfrak{sl}_k(\mathbb{C})\). J. Algebra 278(1), 251–293 (2004)
Cochet, C.: Vector partition function and representation theory. In: Conference Proceedings Formal Power Series and Algebraic Combinatorics, p. 12, 2005
Deckart, R.W.: On the combinatorics of Kostant’s partition function. J. Algebra 96(1), 9–17 (1985)
Fernández-Núñez, J., García-Fuertes, W., Perelomov, A.M.: On the generating function of weight multiplicities for the representations of the Lie algebra \(C_2\). J. Math. Phys. 56(4), 041702 (2015)
Goodman, R., Wallach, N.R.: Symmetry. Representations and Invariants. Springer, New York (2009)
Gupta, R.K.: Characters and the \(q\)-analog of weight multiplicity. J. Lond. Math. Soc. 2(1), 68–76 (1987)
Harris, P.E.: Chapter 9. In: Wootton, A., Peterson, V., Lee, C. (eds.) A Primer for Undergraduate Research, Foundations for Undergraduate Research in Mathematics. Birkhäuser, Basel (to appear)
Harris, P.E.: Combinatorial problems related to Kostant’s weight multiplicity formula. Doctoral dissertation, University of Wisconsin-Milwaukee, Milwaukee, WI (2012)
Harris, P.E.: Kostant’s weight multiplicity formula and the Fibonacci numbers. arXiv:1111.6648 [math.RT]
Harris, P.E.: On the adjoint representation of \(\mathfrak{sl}_n\) and the Fibonacci numbers. C. R. Math. Acad. Sci. Paris 349, 935–937 (2011)
Harris, P.E., Insko, E., Omar, M.: The \(q\)-analog of Kostant’s partition function and the highest root of the simple Lie algebras (2016). http://arxiv.org/pdf/1508.07934
Harris, P.E., Insko, E., Simpson, A.: Computing weight \(q\)-multiplicities for the representations of the simple Lie algebras (2017). http://arxiv.org/pdf/1710.02183
Harris, P.E., Insko, E., Simpson, A.: GitHub code download. https://github.com/antman1935/lie_algebras
Harris, P., Insko, E., Williams, L.: The adjoint representation of a classical Lie algebra and the support of Kostant’s weight multiplicity formula. J. Comb. 7(1), 75–116 (2016)
Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Universty Press, Cambridge (1997)
Kostant, B.: A formula for the multiplicity of a weight. Proc. Nat. Acad. Sci. USA 44, 588–589 (1958)
Knapp, A.W.: Lie Groups Beyond an Introduction. Birkhäuser Boston Inc., Boston (2002)
Lusztig, G.: Singularities, character formulas, and a \(q\)-analog of weight multiplicities. Astérisque 101(102), 208–229 (1983)
Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, pp. 141–144. Springer, New York (2001)
Schmidt, J.R., Bincer, A.M.: The Kostant partition function for simple Lie algebras. J. Math. Phys. 25(8), 2367–2373 (1984)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first and third author were supported by NSF award DMS-1620202.
Rights and permissions
About this article
Cite this article
Harris, P.E., Insko, E. & Simpson, A. Computing weight q-multiplicities for the representations of the simple Lie algebras. AAECC 29, 351–362 (2018). https://doi.org/10.1007/s00200-017-0346-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-017-0346-7