Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Constructing the set of complete intersection numerical semigroups with a given Frobenius number

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Delorme suggested that the set of all complete intersection numerical semigroups can be computed recursively. We have implemented this algorithm, and particularized it to several subfamilies of this class of numerical semigroups: free and telescopic numerical semigroups, and numerical semigroups associated to an irreducible plane curve singularity. The recursive nature of this procedure allows us to give bounds for the embedding dimension and for the minimal generators of a semigroup in any of these families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bertin, J., Carbonne, P.: Semi-groupes d’entiers et application aux branches. J. Algebra 49, 81–95 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bermejo, I., García-Marco, I., Salazar-González, J.J.: An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection. J. Symb. Comput. 42, 971–991 (2007)

    Article  MATH  Google Scholar 

  3. Bermejo, I., Gimenez, P., Reyes, E., Villarreal, R.H.: Complete intersections in affine monomial curves. Bol. Soc. Mat. Mexicana (3) 11(2), 191–203 (2005)

    Google Scholar 

  4. Bras-Amorós, M.: Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum 76, 379–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delorme, C.: Sous-monoïdes d’intersection complète de \({\mathbb{N}}\). Ann. Scient. École Norm. Sup. 4(9), 145–154 (1976)

    MathSciNet  Google Scholar 

  6. Delgado, M.: Experiments with numerical semigroups (in preparation)

  7. Delgado, M., García-Sánchez, P.A., Morais, J.: “Numericalsgps”: a gap package on numerical semigroups. (http://www.gap-system.org/Packages/numericalsgps.html)

  8. The GAP Group, GAP—Groups, algorithms, and programming, version 4.4; 2004. (http://www.gap-system.org)

  9. García-Sánchez, P.A., Ojeda, I., Rosales, J.C.: Affine semigroups having a unique Betti element. J. Algebra Appl. 12 1250177 (11 pages) (2013)

  10. Herzog, J., Kunz, E.: Die Wertehalbgruppe eines lokalen Rings der Dimension 1, S. B. Heidelberger Akad. Wiss. Math. Natur. Kl 2767 (1971)

  11. Johnson, S.M.: A linear Diophantine problem. Can. J. Math. 12, 390–398 (1960)

    Article  MATH  Google Scholar 

  12. Kirfel, C., Pellikaan, R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inform. Theory 41, 1720–1732 (1995). Special issue on algebraic geometry codes

    Article  MathSciNet  MATH  Google Scholar 

  13. Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem, Oxford Lectures Series in Mathematics and its Applications, vol. 30. Oxford University Press (2005)

  14. Rosales, J.C.: On presentations of subsemigroups of \({\mathbb{N}}^{n}\). Semigroup Forum 55, 152–159 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rosales, J.C., García-Sánchez, P.A.: On numerical semigroups with high embedding dimension. J. Algebra 203, 567–578 (1998)

    Google Scholar 

  16. Rosales, J.C., García-Sánchez, P.A.: On free affine semigroups. Semigroup Forum 58(3), 367–385 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups, Developments in Mathematics, vol. 20. Springer, New York (2009)

    Book  Google Scholar 

  18. Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Jiménez-Madrid, J.A.: Fundamental gaps in numerical semigroups. J. Pure Appl. Alg. 189, 301–313 (2004)

    Article  MATH  Google Scholar 

  19. Zhai, A.: Fibonacci-like growth of numerical semigroups of a given genus, arXiv:1111.3142

  20. Zariski, O.: Le problème des modules pour les courbes planes. Hermann (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Assi.

Additional information

The first author is partially supported by the project GDR CNRS 2945.

The second author is supported by the projects MTM2010-15595, FQM-343, FQM-5849, and FEDER funds. This research was performed while the second author visited the Université d’Angers as invited lecturer, and he wants to thank the Département de Mathématiques of this university for its kind hospitality. The authors would like to thank the referees for their suggestions, comments and examples provided.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assi, A., García-Sánchez, P.A. Constructing the set of complete intersection numerical semigroups with a given Frobenius number. AAECC 24, 133–148 (2013). https://doi.org/10.1007/s00200-013-0186-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-013-0186-z

Keywords

Navigation