Abstract
Delorme suggested that the set of all complete intersection numerical semigroups can be computed recursively. We have implemented this algorithm, and particularized it to several subfamilies of this class of numerical semigroups: free and telescopic numerical semigroups, and numerical semigroups associated to an irreducible plane curve singularity. The recursive nature of this procedure allows us to give bounds for the embedding dimension and for the minimal generators of a semigroup in any of these families.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bertin, J., Carbonne, P.: Semi-groupes d’entiers et application aux branches. J. Algebra 49, 81–95 (1977)
Bermejo, I., García-Marco, I., Salazar-González, J.J.: An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection. J. Symb. Comput. 42, 971–991 (2007)
Bermejo, I., Gimenez, P., Reyes, E., Villarreal, R.H.: Complete intersections in affine monomial curves. Bol. Soc. Mat. Mexicana (3) 11(2), 191–203 (2005)
Bras-Amorós, M.: Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum 76, 379–384 (2008)
Delorme, C.: Sous-monoïdes d’intersection complète de \({\mathbb{N}}\). Ann. Scient. École Norm. Sup. 4(9), 145–154 (1976)
Delgado, M.: Experiments with numerical semigroups (in preparation)
Delgado, M., García-Sánchez, P.A., Morais, J.: “Numericalsgps”: a gap package on numerical semigroups. (http://www.gap-system.org/Packages/numericalsgps.html)
The GAP Group, GAP—Groups, algorithms, and programming, version 4.4; 2004. (http://www.gap-system.org)
García-Sánchez, P.A., Ojeda, I., Rosales, J.C.: Affine semigroups having a unique Betti element. J. Algebra Appl. 12 1250177 (11 pages) (2013)
Herzog, J., Kunz, E.: Die Wertehalbgruppe eines lokalen Rings der Dimension 1, S. B. Heidelberger Akad. Wiss. Math. Natur. Kl 2767 (1971)
Johnson, S.M.: A linear Diophantine problem. Can. J. Math. 12, 390–398 (1960)
Kirfel, C., Pellikaan, R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inform. Theory 41, 1720–1732 (1995). Special issue on algebraic geometry codes
Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem, Oxford Lectures Series in Mathematics and its Applications, vol. 30. Oxford University Press (2005)
Rosales, J.C.: On presentations of subsemigroups of \({\mathbb{N}}^{n}\). Semigroup Forum 55, 152–159 (1997)
Rosales, J.C., García-Sánchez, P.A.: On numerical semigroups with high embedding dimension. J. Algebra 203, 567–578 (1998)
Rosales, J.C., García-Sánchez, P.A.: On free affine semigroups. Semigroup Forum 58(3), 367–385 (1999)
Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups, Developments in Mathematics, vol. 20. Springer, New York (2009)
Rosales, J.C., García-Sánchez, P.A., García-García, J.I., Jiménez-Madrid, J.A.: Fundamental gaps in numerical semigroups. J. Pure Appl. Alg. 189, 301–313 (2004)
Zhai, A.: Fibonacci-like growth of numerical semigroups of a given genus, arXiv:1111.3142
Zariski, O.: Le problème des modules pour les courbes planes. Hermann (1986)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author is partially supported by the project GDR CNRS 2945.
The second author is supported by the projects MTM2010-15595, FQM-343, FQM-5849, and FEDER funds. This research was performed while the second author visited the Université d’Angers as invited lecturer, and he wants to thank the Département de Mathématiques of this university for its kind hospitality. The authors would like to thank the referees for their suggestions, comments and examples provided.
Rights and permissions
About this article
Cite this article
Assi, A., García-Sánchez, P.A. Constructing the set of complete intersection numerical semigroups with a given Frobenius number. AAECC 24, 133–148 (2013). https://doi.org/10.1007/s00200-013-0186-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-013-0186-z