Abstract
We discuss parametrizations of filter coefficients of scaling functions and compactly supported orthonormal wavelets with several vanishing moments. We introduce the first discrete moments of the filter coefficients as parameters. The discrete moments can be expressed in terms of the continuous moments of the related scaling function. To solve the resulting polynomial equations we use symbolic computation and in particular Gröbner bases. The cases of four to ten filter coefficients are discussed and explicit parametrizations are given.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Becker T. and Weispfenning V. (1993). Gröbner Bases, Graduate Texts in Mathematics, vol. 141. Springer, New York
Bourbaki N. (1990). Algebra. II. Chap. 4–7. Elements of Mathematics (Berlin). Springer, Berlin
Bratteli O. and Jorgensen P. (2002). Wavelets through a Looking Glass. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston
Buchberger, B.: An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). Ph.D. Thesis, University of Innsbruck (1965) (English translation published in [7])
Buchberger B. (1970). Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4: 374–383
Buchberger B. (1998). Introduction to Gröbner bases. In: Buchberger, B. and Winkler, F. (eds) Gröbner Bases and Applications (Linz, 1998), Lond Math. Soc. Lect Note Ser., vol. 251, pp 3–31. Cambridge University Press, Cambridge
Buchberger, B.: Bruno Buchberger’s Ph.D. thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4): 475–511 (2006) (Translated from the 1965 German original by Michael P. Abramson)
Charoenlarpnopparut C. and Bose N. (1999). Multidimensional FIR filter bank design using Gröbner bases. IEEE Trans. Circuits Syst., II, Analog Digit. Signal Process. 46(12): 1475–1486
Chyzak F., Paule P., Scherzer O., Schoisswohl A. and Zimmermann B. (2001). The construction of orthonormal wavelets using symbolic methods and a matrix analytical approach for wavelets on the interval. Exp. Math. 10(1): 67–86
Cohen A. (1990). Ondelettes, analyses multirésolutions et filtres miroirs en quadrature. Ann. Inst. H. Poincaré Anal. Non Linéaire 7(5): 439–459
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Undergraduate Texts in Mathematics. Springer, New York (1997). An introduction to computational algebraic geometry and commutative algebra
Daubechies I. (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41(7): 909–996
Daubechies I. (1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (SIAM), Philadelphia
Daubechies I. (1993). Orthonormal bases of compactly supported wavelets. II. Variations on a theme. SIAM J. Math. Anal. 24(2): 499–519
Faugère J.C., Moreau de Saint-Martin F. and Rouillier F. (1998). Design of regular nonseparable bidimensional wavelets using Gröbner basis techniques. IEEE Trans. Signal Process. 46(4): 845–856
Haar A. (1910). Zur Theorie der orthogonalen Funktionensysteme. (Erste Mitteilung.). Math. Ann. 69: 331–371
Hereford, J.M., Roach, D.W., Pigford, R.: Image compression using parameterized wavelets with feedback. pp. 267–277. SPIE (2003)
Jorgensen P.E.T. (2003). Matrix factorizations, algorithms, wavelets. Notices Am. Math. Soc. 50(8): 880–894
Knuth, D.E.: The art of computer programming. Vol. 1: Fundamental algorithms, 3rd edn. Addison-Wesley, Reading. xx, p. 650 (1997)
Lai, M.J., Roach, D.W.: Parameterizations of univariate orthogonal wavelets with short support. In: Approximation Theory, X, St Louis, MO, 2001, Innov. Appl. Math., pp. 369–384. Vanderbilt University Press, Nashville, TN (2002)
Lawton W.M. (1990). Tight frames of compactly supported affine wavelets. J. Math. Phys. 31(8): 1898–1901
Lawton W.M. (1991). Necessary and sufficient conditions for constructing orthonormal wavelet bases. J. Math. Phys. 32(1): 57–61
Lebrun J. and Selesnick I. (2004). Gröbner bases and wavelet design. J. Symb. Comput. 37(2): 227–259
Lebrun J. and Vetterli M. (2001). High-order balanced multiwavelets: Theory, factorization and design. IEEE Trans. Signal Process. 49(9): 1918–1930
Lina J.M. and Mayrand M. (1993). Parametrizations for Daubechies wavelets. Phys. Rev. E (3) 48(6): R4160–R4163
Mallat S. (1998). A Wavelet Tour of Signal Processing. Academic, San Diego
Park H. (2004). Symbolic computation and signal processing. J. Symb. Comput. 37(2): 209–226
Park H., Kalker T. and Vetterli M. (1997). Gröbner bases and multidimensional FIR multirate systems. Multidimensional Syst. Signal Process. 8(1–2): 11–30
Pollen D. (1990). SU I (2,F[z,1/z]) for F a subfield of C. J. Am. Math. Soc. 3(3): 611–624
Regensburger G. and Scherzer O. (2005). Symbolic computation for moments and filter coefficients of scaling functions. Ann. Comb. 9(2): 223–243
Schneid J. and Pittner S. (1993). On the parametrization of the coefficients of dilation equations for compactly supported wavelets. Computing 51(2): 165–173
Selesnick I.W. and Burrus C.S. (1998). Maximally flat low-pass FIR filters with reduced delay. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(1): 53–68
Shann W.C. and Yen C.C. (1999). On the exact values of orthonormal scaling coefficients of lengths 8 and 10. Appl. Comput. Harmon. Anal. 6(1): 109–112
Sherlock B.G. and Monro D.M. (1998). On the space of orthonormal wavelets. IEEE Trans. Signal Process. 46(6): 1716–1720
Strang G. and Nguyen T. (1996). Wavelets and filter banks. Wellesley–Cambridge Press, Wellesley
Unser M. and Blu T. (2003). Wavelet theory demystified. IEEE Trans. Signal Process. 51(2): 470–483
Wang S.H., Tewfik A.H. and Zou H. (1994). Correction to ‘parametrization of compactly supported orthonormal wavelets’. IEEE Trans. Signal Process. 42(1): 208–209
Wells R.O. (1993). Parametrizing smooth compactly supported wavelets. Trans. Am. Math. Soc. 338(2): 919–931
Zou H. and Tewfik A.H. (1993). Parametrization of compactly supported orthonormal wavelets. IEEE Trans. Signal Process. 41(3): 1428–1431
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the Austrian Science Fund (FWF) under the SFB grant F1322.
Rights and permissions
About this article
Cite this article
Regensburger, G. Parametrizing compactly supported orthonormal wavelets by discrete moments. AAECC 18, 583–601 (2007). https://doi.org/10.1007/s00200-007-0054-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-007-0054-9