Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Quantile regression with nonadditive fixed effects

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

This paper introduces a quantile regression estimator for panel data (QRPD) with nonadditive fixed effects, maintaining the nonseparable disturbance term commonly associated with quantile estimation. QRPD estimates the impact of exogenous or endogenous treatment variables on the outcome distribution using “within” variation in the instruments for identification purposes. Most quantile panel data estimators include additive fixed effects which separates the disturbance term and assumes the parameters vary based only on the time-varying components of the disturbance term. QRPD produces consistent estimates for small T. I estimate the effect of the 2008 tax rebates on the short-term household consumption distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. I use capital letters to designate random variables and lower case letters to denote potential values that those random variables may take.

  2. I refer to “individuals" in this paper as the observed unit, though the estimator is also useful for state fixed effects, fixed effects based on demographics, and so on.

  3. Graham et al. (2009) shows that there is no incidental parameters problem in a quantile model with additive fixed effects when there are no heterogeneous effects (i.e., the effect is constant throughout the distribution). This argument likely does not extend generally to the case of heterogeneous effects. Ponomareva (2011) introduces an additive effects estimator that is consistent for small T.

  4. It is also sometimes assumed that \(\alpha _i(U_{it})= \alpha _i\) such that the fixed effects do not vary based on \(U_{it}\).

  5. This framework intentionally follows Chernozhukov and Hansen (2005) closely.

  6. For GQR, any non-additive fixed effects would need to be included in the estimation of the conditional probability that the outcome is smaller than the quantile function. With small T, this approach will not generate consistent predictions. This limitation partially motivates the introduction of QRPD.

  7. With no time effects and only a constant, then \({\mathcal {B}} \equiv \left\{ {\mathbf {b}} \quad | \quad \tau -\frac{1}{NT} < \frac{1}{NT} \sum \nolimits _{i=1} \sum \nolimits _{t=1} {\mathbf {1}}\!\left( Y_{it} \le {\mathbf {D}}_{it}'{\mathbf {b}}\right) \le \tau \right\} \). Note that \({\mathcal {B}}\) is guaranteed to be non-empty.

  8. With exact identification, the moment conditions hold with equality (or as close to equality as possible) regardless so there is no loss in efficiency.

  9. Consider studying policy effects on the distribution of consumption over a long time period with high inflation. Without year fixed effects (which shift the entire distribution of consumption), the “high quantiles" would primarily refer to later time periods. Including time fixed effects allows for the estimates to be interpreted as the effects of the policies on the outcome distribution within a year, equivalent to the interpretation of cross-sectional quantile regression estimates.

  10. This estimate is slightly different from the results presented in Parker et al. (2013) because I include interactions based on quarter, number of adults, and number of dependents. Number of adults and number of dependents are held constant within a household pair, using the values in the initial quarter of the pair. Parker et al. (2013) control for quarter fixed effects, number of adults, and number of dependents. The interaction terms correspond to the “time fixed effects” discussed in Sect. 3.2. They are important for the estimation of QTEs. If, for example, I did not allow the consumption distribution to shift based on number of adults and children, then the “high quantiles" would primarily refer to large households. We are likely interested in how the top of the household consumption—given its size—responds to transitory income.

  11. Estimates greater than one are consistent with households using transitory income shocks to supplement savings to make larger purchases.

References

  • Abrevaya J, Dahl CM (2008) The effects of birth inputs on birthweight. J Bus Econ Stat 26:379–397

    Article  Google Scholar 

  • Andrews DWK (1994) Empirical process methods in econometrics. Handb Econom 4:2247–2294

    Google Scholar 

  • Angrist JD (2001) Estimation of limited dependent variable models with dummy endogenous regressors: simple strategies for empirical practice. J Bus Econ Stat 19(1):2–28

    Article  Google Scholar 

  • Angrist J, Chernozhukov V, Fernández-Val I (2006) Quantile regression under misspecification, with an application to the US wage structure. Econometrica 74(2):539–563

    Article  Google Scholar 

  • Arellano M, Bonhomme S (2016) Nonlinear panel data estimation via quantile regressions. Econom J 19:C61–C94

    Article  Google Scholar 

  • Beckmann M, Cornelissen T, Kräkel M (2017) Self-managed working time and employee effort: theory and evidence. J Econ Behav Organ 133:285–302

    Article  Google Scholar 

  • Besstremyannaya G, Golovan S (2019) Reconsideration of a simple approach to quantile regression for panel data. Econom J 22(3):292–308

    Article  Google Scholar 

  • Bitler MP, Gelbach JB, Hoynes HW (2006) What mean impacts miss: distributional effects of welfare reform experiments. Am Econ Rev 96(4):988–1012

    Article  Google Scholar 

  • Cai Z, Chen L, Fang Y (2018) A semiparametric quantile panel data model with an application to estimating the growth effect of FDI. J Econom 206(2):531–553

    Article  Google Scholar 

  • Canay IA (2011) A note on quantile regression for panel data models. Econom J 14:368–386

    Article  Google Scholar 

  • Chernozhukov V, Hansen C (2005) An IV model of quantile treatment effects. Econometrica 73(1):245–261

    Article  Google Scholar 

  • Chernozhukov V, Hansen C (2006) Instrumental quantile regression inference for structural and treatment effect models. J Econom 132(2):491–525

    Article  Google Scholar 

  • Chernozhukov V, Fernández-Val I, Hahn J, Newey W (2013) Average and quantile effects in nonseparable panel models. Econometrica 81(2):535–580

    Article  Google Scholar 

  • de Castro L, Galvao AF, Kaplan DM, Liu X (2019) Smoothed GMM for quantile models. J Econom 213(1):121–144

    Article  Google Scholar 

  • Dong Y, Shen S (2017) Testing for rank invariance or similarity in program evaluation. Rev Econ Stat 100:78–85

    Article  Google Scholar 

  • Firpo S, Galvao AF, Pinto C, Poirier A, Sanroman G (2021) GMM quantile regression. J Econom. https://doi.org/10.1016/j.jeconom.2020.11.014

    Article  Google Scholar 

  • Frandsen BR, Lefgren LJ (2017) Testing rank similarity. Rev Econ Stat 100:86–91

    Article  Google Scholar 

  • Galvao AF (2011) Quantile regression for dynamic panel data with fixed effects. J Econom 164(1):142–157

    Article  Google Scholar 

  • Galvao AF, Wang L (2015) Efficient minimum distance estimator for quantile regression fixed effects panel data. J Multivar Anal 133:1–26

    Article  Google Scholar 

  • Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8(1):140–154

    Article  Google Scholar 

  • Graham BS, Hahn J, Powell JL (2009) The incidental parameter problem in a non-differentiable panel data model. Econ Lett 105(2):181–182

    Article  Google Scholar 

  • Graham BS, Hahn J, Poirier A, Powell JL (2015) A quantile correlated random coefficients panel data model. J Econom 206:305–35

    Article  Google Scholar 

  • Hagemann A (2016) Cluster-robust bootstrap inference in quantile regression models. J Am Stat Assoc 112:446–456

    Article  Google Scholar 

  • Harding M, Lamarche C (2009) A quantile regression approach for estimating panel data models using instrumental variables. Econ Lett 104(3):133–135

    Article  Google Scholar 

  • Harding M, Lamarche C, Pesaran MH (2020) Common correlated effects estimation of heterogeneous dynamic panel quantile regression models. J Appl Econom 35(3):294–314

    Article  Google Scholar 

  • Johnson DS, Parker JA, Souleles NS (2006) Household expenditure and the income tax rebates of 2001. Am Econ Rev 96(5):1589–1610

    Article  Google Scholar 

  • Kato K, Galvao AF, Montes-Rojas GV (2012) Asymptotics for panel quantile regression models with individual effects. J Econom 170(1):76–91

    Article  Google Scholar 

  • Koenker R (2004) Quantile regression for longitudinal data. J Multivar Anal 91(1):74–89

    Article  Google Scholar 

  • Lamarche C (2010) Robust penalized quantile regression estimation for panel data. J Econom 157(2):396–408

    Article  Google Scholar 

  • Machado JAF, Santos Silva JMC (2019) Quantiles via moments. J Econom 213:145–73

    Article  Google Scholar 

  • Misra K, Surico P (2014) Consumption, income changes, and heterogeneity: evidence from two fiscal stimulus programs. Am Econ J Macroecon 6(4):84–106

    Article  Google Scholar 

  • Newey WK, McFadden D (1994) Large sample estimation and hypothesis testing. Handb Econom 4:2111–2245

    Google Scholar 

  • Newey WK, West KD (1987) Hypothesis testing with efficient method of moments estimation. Int Econ Rev 28:777–787

    Article  Google Scholar 

  • Parente PMDC, Santos Silva JMC (2016) Quantile regression with clustered data. J Econom Methods 5(1):1–15

    Article  Google Scholar 

  • Parker JA, Souleles NS, Johnson DS, McClelland R (2013) Consumer spending and the economic stimulus payments of 2008. Am Econ Rev 103(6):2530–2553

    Article  Google Scholar 

  • Ponomareva M (2011) Quantile regression for panel data models with fixed effects and small T: identification and estimation. Working Paper, University of Western Ontario

  • Powell JL (1986) Censored regression quantiles. J Econom 32(1):143–155

    Article  Google Scholar 

  • Powell D (2020a) Does labor supply respond to transitory income? Evidence from the economic stimulus payments of 2008. J Labor Econ 38(1):1–38

  • Powell D (2020b) Quantile treatment effects in the presence of covariates. Rev Econ Stat 102:1–39

  • Rosen AM (2012) Set identification via quantile restrictions in short panels. J Econom 166(1):127–137

    Article  Google Scholar 

  • Smith TA (2017) Do school food programs improve child dietary quality? Am J Agric Econ 99(2):339–356

    Article  Google Scholar 

  • Valizadeh P, Smith TA (2020) How Did The American recovery and reinvestment act affect the material well-being of SNAP participants? A distributional approach. Appl Econ Perspect Policy 42(3):455–476

    Article  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, Berlin

    Book  Google Scholar 

  • Wüthrich K (2019) A comparison of two quantile models with endogeneity. J Bus Econ Stat 38:1–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Powell.

Ethics declarations

Conflict of interest

The author has no conflict of interest to report.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I am very grateful to Jerry Hausman and Whitney Newey for their guidance. I also want to thank Abby Alpert, David Autor, Matt Baker, Marianne Bitler, Lane Burgette, Yingying Dong, David Drukker, Tal Gross, Jon Gruber, Amanda Pallais, Christopher Palmer, Jim Poterba, Nirupama Rao, João M.C. Santos Silva, Hui Shan, and Travis Smith for helpful discussions. I am grateful for helpful comments received from seminar participants at the North American Summer Meeting of the Econometric Society, RAND, UCI, and the Stata Conference. Funding from the CDC (R01CE02999) is gratefully acknowledged.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 225 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powell, D. Quantile regression with nonadditive fixed effects. Empir Econ 63, 2675–2691 (2022). https://doi.org/10.1007/s00181-022-02216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-022-02216-6

Keywords

JEL Classification

Navigation