Abstract
This paper introduces a quantile regression estimator for panel data (QRPD) with nonadditive fixed effects, maintaining the nonseparable disturbance term commonly associated with quantile estimation. QRPD estimates the impact of exogenous or endogenous treatment variables on the outcome distribution using “within” variation in the instruments for identification purposes. Most quantile panel data estimators include additive fixed effects which separates the disturbance term and assumes the parameters vary based only on the time-varying components of the disturbance term. QRPD produces consistent estimates for small T. I estimate the effect of the 2008 tax rebates on the short-term household consumption distribution.
Similar content being viewed by others
Notes
I use capital letters to designate random variables and lower case letters to denote potential values that those random variables may take.
I refer to “individuals" in this paper as the observed unit, though the estimator is also useful for state fixed effects, fixed effects based on demographics, and so on.
Graham et al. (2009) shows that there is no incidental parameters problem in a quantile model with additive fixed effects when there are no heterogeneous effects (i.e., the effect is constant throughout the distribution). This argument likely does not extend generally to the case of heterogeneous effects. Ponomareva (2011) introduces an additive effects estimator that is consistent for small T.
It is also sometimes assumed that \(\alpha _i(U_{it})= \alpha _i\) such that the fixed effects do not vary based on \(U_{it}\).
This framework intentionally follows Chernozhukov and Hansen (2005) closely.
For GQR, any non-additive fixed effects would need to be included in the estimation of the conditional probability that the outcome is smaller than the quantile function. With small T, this approach will not generate consistent predictions. This limitation partially motivates the introduction of QRPD.
With no time effects and only a constant, then \({\mathcal {B}} \equiv \left\{ {\mathbf {b}} \quad | \quad \tau -\frac{1}{NT} < \frac{1}{NT} \sum \nolimits _{i=1} \sum \nolimits _{t=1} {\mathbf {1}}\!\left( Y_{it} \le {\mathbf {D}}_{it}'{\mathbf {b}}\right) \le \tau \right\} \). Note that \({\mathcal {B}}\) is guaranteed to be non-empty.
With exact identification, the moment conditions hold with equality (or as close to equality as possible) regardless so there is no loss in efficiency.
Consider studying policy effects on the distribution of consumption over a long time period with high inflation. Without year fixed effects (which shift the entire distribution of consumption), the “high quantiles" would primarily refer to later time periods. Including time fixed effects allows for the estimates to be interpreted as the effects of the policies on the outcome distribution within a year, equivalent to the interpretation of cross-sectional quantile regression estimates.
This estimate is slightly different from the results presented in Parker et al. (2013) because I include interactions based on quarter, number of adults, and number of dependents. Number of adults and number of dependents are held constant within a household pair, using the values in the initial quarter of the pair. Parker et al. (2013) control for quarter fixed effects, number of adults, and number of dependents. The interaction terms correspond to the “time fixed effects” discussed in Sect. 3.2. They are important for the estimation of QTEs. If, for example, I did not allow the consumption distribution to shift based on number of adults and children, then the “high quantiles" would primarily refer to large households. We are likely interested in how the top of the household consumption—given its size—responds to transitory income.
Estimates greater than one are consistent with households using transitory income shocks to supplement savings to make larger purchases.
References
Abrevaya J, Dahl CM (2008) The effects of birth inputs on birthweight. J Bus Econ Stat 26:379–397
Andrews DWK (1994) Empirical process methods in econometrics. Handb Econom 4:2247–2294
Angrist JD (2001) Estimation of limited dependent variable models with dummy endogenous regressors: simple strategies for empirical practice. J Bus Econ Stat 19(1):2–28
Angrist J, Chernozhukov V, Fernández-Val I (2006) Quantile regression under misspecification, with an application to the US wage structure. Econometrica 74(2):539–563
Arellano M, Bonhomme S (2016) Nonlinear panel data estimation via quantile regressions. Econom J 19:C61–C94
Beckmann M, Cornelissen T, Kräkel M (2017) Self-managed working time and employee effort: theory and evidence. J Econ Behav Organ 133:285–302
Besstremyannaya G, Golovan S (2019) Reconsideration of a simple approach to quantile regression for panel data. Econom J 22(3):292–308
Bitler MP, Gelbach JB, Hoynes HW (2006) What mean impacts miss: distributional effects of welfare reform experiments. Am Econ Rev 96(4):988–1012
Cai Z, Chen L, Fang Y (2018) A semiparametric quantile panel data model with an application to estimating the growth effect of FDI. J Econom 206(2):531–553
Canay IA (2011) A note on quantile regression for panel data models. Econom J 14:368–386
Chernozhukov V, Hansen C (2005) An IV model of quantile treatment effects. Econometrica 73(1):245–261
Chernozhukov V, Hansen C (2006) Instrumental quantile regression inference for structural and treatment effect models. J Econom 132(2):491–525
Chernozhukov V, Fernández-Val I, Hahn J, Newey W (2013) Average and quantile effects in nonseparable panel models. Econometrica 81(2):535–580
de Castro L, Galvao AF, Kaplan DM, Liu X (2019) Smoothed GMM for quantile models. J Econom 213(1):121–144
Dong Y, Shen S (2017) Testing for rank invariance or similarity in program evaluation. Rev Econ Stat 100:78–85
Firpo S, Galvao AF, Pinto C, Poirier A, Sanroman G (2021) GMM quantile regression. J Econom. https://doi.org/10.1016/j.jeconom.2020.11.014
Frandsen BR, Lefgren LJ (2017) Testing rank similarity. Rev Econ Stat 100:86–91
Galvao AF (2011) Quantile regression for dynamic panel data with fixed effects. J Econom 164(1):142–157
Galvao AF, Wang L (2015) Efficient minimum distance estimator for quantile regression fixed effects panel data. J Multivar Anal 133:1–26
Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8(1):140–154
Graham BS, Hahn J, Powell JL (2009) The incidental parameter problem in a non-differentiable panel data model. Econ Lett 105(2):181–182
Graham BS, Hahn J, Poirier A, Powell JL (2015) A quantile correlated random coefficients panel data model. J Econom 206:305–35
Hagemann A (2016) Cluster-robust bootstrap inference in quantile regression models. J Am Stat Assoc 112:446–456
Harding M, Lamarche C (2009) A quantile regression approach for estimating panel data models using instrumental variables. Econ Lett 104(3):133–135
Harding M, Lamarche C, Pesaran MH (2020) Common correlated effects estimation of heterogeneous dynamic panel quantile regression models. J Appl Econom 35(3):294–314
Johnson DS, Parker JA, Souleles NS (2006) Household expenditure and the income tax rebates of 2001. Am Econ Rev 96(5):1589–1610
Kato K, Galvao AF, Montes-Rojas GV (2012) Asymptotics for panel quantile regression models with individual effects. J Econom 170(1):76–91
Koenker R (2004) Quantile regression for longitudinal data. J Multivar Anal 91(1):74–89
Lamarche C (2010) Robust penalized quantile regression estimation for panel data. J Econom 157(2):396–408
Machado JAF, Santos Silva JMC (2019) Quantiles via moments. J Econom 213:145–73
Misra K, Surico P (2014) Consumption, income changes, and heterogeneity: evidence from two fiscal stimulus programs. Am Econ J Macroecon 6(4):84–106
Newey WK, McFadden D (1994) Large sample estimation and hypothesis testing. Handb Econom 4:2111–2245
Newey WK, West KD (1987) Hypothesis testing with efficient method of moments estimation. Int Econ Rev 28:777–787
Parente PMDC, Santos Silva JMC (2016) Quantile regression with clustered data. J Econom Methods 5(1):1–15
Parker JA, Souleles NS, Johnson DS, McClelland R (2013) Consumer spending and the economic stimulus payments of 2008. Am Econ Rev 103(6):2530–2553
Ponomareva M (2011) Quantile regression for panel data models with fixed effects and small T: identification and estimation. Working Paper, University of Western Ontario
Powell JL (1986) Censored regression quantiles. J Econom 32(1):143–155
Powell D (2020a) Does labor supply respond to transitory income? Evidence from the economic stimulus payments of 2008. J Labor Econ 38(1):1–38
Powell D (2020b) Quantile treatment effects in the presence of covariates. Rev Econ Stat 102:1–39
Rosen AM (2012) Set identification via quantile restrictions in short panels. J Econom 166(1):127–137
Smith TA (2017) Do school food programs improve child dietary quality? Am J Agric Econ 99(2):339–356
Valizadeh P, Smith TA (2020) How Did The American recovery and reinvestment act affect the material well-being of SNAP participants? A distributional approach. Appl Econ Perspect Policy 42(3):455–476
van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer, Berlin
Wüthrich K (2019) A comparison of two quantile models with endogeneity. J Bus Econ Stat 38:1–28
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author has no conflict of interest to report.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
I am very grateful to Jerry Hausman and Whitney Newey for their guidance. I also want to thank Abby Alpert, David Autor, Matt Baker, Marianne Bitler, Lane Burgette, Yingying Dong, David Drukker, Tal Gross, Jon Gruber, Amanda Pallais, Christopher Palmer, Jim Poterba, Nirupama Rao, João M.C. Santos Silva, Hui Shan, and Travis Smith for helpful discussions. I am grateful for helpful comments received from seminar participants at the North American Summer Meeting of the Econometric Society, RAND, UCI, and the Stata Conference. Funding from the CDC (R01CE02999) is gratefully acknowledged.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Powell, D. Quantile regression with nonadditive fixed effects. Empir Econ 63, 2675–2691 (2022). https://doi.org/10.1007/s00181-022-02216-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00181-022-02216-6
Keywords
- Nonadditive fixed effects
- Instrumental variables
- Panel data
- Quantile treatment effects
- Nonseparable disturbance