Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Exchangeable stable random vectors and their simulations

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

This work concerns the simulation of an exchangeable stable random vector. A characterization for exchangeability of a stable random vector, in terms of its spectral measure, is given. The Modarres and Nolan’s simulating method on stable random vectors is modified to the exchangeable case. FORTRAN subroutines to simulate a desirable exchangeable stable random vector and to create an exchangeable partition are written.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Byczkowski, T., Nolan, J. P. and Rajput, B. S. (1993). Approximation of Multidimensional Stable Densities. J. of Multivariate Analysis 46(1), 13–31.

    Article  MathSciNet  Google Scholar 

  2. Koch, G. and Spizzichino, F. (1982). Exchangeability in Probability and Statistics. Nort-Holland, Amsterdam

    MATH  Google Scholar 

  3. Kuelbs, J. (1973). A Representation Theorem for Symmetric Stable Processes and Stable Measures on H. Z. Wahr. verw. Geb. 26 259–271.

    Article  MathSciNet  Google Scholar 

  4. Modarres, R. and Nolan, J. P. (1994). A Method for Simulating Stable Random Vectors. Computational Statistics, 9, 11–19.

    MathSciNet  MATH  Google Scholar 

  5. Paulauskas, V. J. (1976). Some Remarks on Multivariate Stable Distributions. J. of Multivariate Analysis 6, 356–368.

    Article  MathSciNet  Google Scholar 

  6. Nolan, J. P. and Panorska, A. K. (1997). Data Analysis for Heavy Tailed Multivariate Samples. Stoch. Models, 13, 687–702.

    Article  MathSciNet  Google Scholar 

  7. Press, S. J. (1972). Multivariate Stable Distributions. J. of Multivariate Analysis 2, 444–462.

    Article  MathSciNet  Google Scholar 

  8. Samorodnisky, G. and Taqqu M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York.

    Google Scholar 

  9. Schilder, M. (1970). Some Structure Theorems for the Symmetric Stable Laws. Ann. Math. Statis., 41, 412–421.

    Article  MathSciNet  Google Scholar 

  10. Soltani, A. R. (1992). More on Conditional Moments of Stable Random Variables. Invited Papers, First Iranian Statistical Conference. 195–201.

  11. Soltani, A. R. and Moeanaddin R. (1994). On Dispersion of Stable Random Vectors and Its Application in the Prediction of Multivariate Stable Processes. J. Appl. Prob. 31, 691–699.

    Article  MathSciNet  Google Scholar 

  12. Tong, Y. L. (1990). The Multivariate Normal Distribution. Springer-Verlag, New York.

    Book  Google Scholar 

Download references

Acknowledgment

The Authors would like to thank a referee for careful reading of the earlier version and providing valuable comments. Thanks also goes to professor J. P. Nolan for providing the authors the literature on the subject, subroutine VSTAB, and its driver program.

Author information

Authors and Affiliations

Authors

5 Appendix

5 Appendix

A1. Constructing an exchangeable partition To prove Theorem 3.3 in Section 3 we need to modify Theorem 1 in Byczkwski, Nolan and Rajput (1993). To do this, we provide an exchangeable partition for Sd−1. We call \({{\cal S}^ \ast }\) a collection of disjoint sets in Sd−1, an exchangeable partition if

  1. (i)

    \({S_{d - 1}} = \bigcup\nolimits_{E \in {{\cal S}^ \ast }} {} E\)

  2. (ii)

    \(E \in {{\cal S}^ * } \Rightarrow \pi E \in {{\cal S}^ * }\), for any π.

In order to construct an exchangeable partition we proceed as follows: let s = (s1, …, sd)′, define

$$\begin{array}{l} {\left[ {S_{11}^\ast = \{ {\bf{s}}:{s_1} < {s_2} < \cdots < {s_d}\} \bigcap {{S_{d - 1}}} ,} \right.} \\ {\left[ {\begin{array}{l} {S_{21}^\ast = \{ {\bf{s}}:{s_1} = {s_2} < {s_3} < \cdots < {s_d}\} \bigcap {{S_{d - 1}}} ,} \\ {S_{22}^\ast = \{ {\bf{s}}:{s_1} < {s_2} = {s_3} < {s_4} < \cdots < {s_d}\} \bigcap {{S_{d - 1}}} ,} \\ \cdots \\ {S_{2(d - 1)}^\ast = \{ {\bf{s}}:{s_1} < {s_2} < \cdots < {s_{d-2}} < {s_{d - 1}} = {s_d}\} \bigcap {{S_{d - 1}}} ,} \end{array}} \right.} \\ \cdots \\ {\left[ {\begin{array}{l} {S_{j1}^\ast = \{ {\bf{s}}:{s_1} = {s_2} = \cdots = {s_j} < {s_{j + 1}} < \cdots < {s_d}\} \bigcap {{S_{d - 1}}} ,} \\ {S_{j2}^\ast = \{ {\bf{s}}:{s_1} < {s_2} = {s_3} = \cdots = {s_{j + 1}} < {s_{j + 2}} < \cdots < {s_d}\} \bigcap {{S_{d - 1}}} ,} \\ \cdots \\ {S_{jk}^\ast = \{ {\bf{s}}:{s_1} < {s_2} < \cdots < {s_k} = {s_{k + 1}} = \cdots = {s_{k + j - 1}} < {s_{k + j}} < \cdots < {s_d}\} ,} \\ {\;\;\;\;\;\;\;\;\;\;\;\bigcap {{S_{d - 1}}} ,} \\ \cdots \\ {S_{j(d - j + 1)}^\ast = \{ {\bf{s}}:{s_1} < {s_2} < \cdots < {s_{d - j + 1}} = {s_{d - j + 2}} = \cdots = {s_d}\} \bigcap {{S_{d - 1}}} ,} \end{array}}\right.} \\ \cdots \\ {\left[ {\begin{array}{l} {S_{(d - 1)1}^\ast = \{ {\bf{s}}:{s_1} = {s_2} = \cdots = {s_{d - 1}} < {s_d}\} \bigcap {{S_{d - 1}}} ,} \\ {S_{(d - 1)2}^\ast = \{ {\bf{s}}:{s_d} < {s_1} = \cdots = {s_{d - 1}}\} \bigcap {{S_{d - 1}}} ,} \end{array}}\right.} \\ {\left[ {\begin{array}{l} {S_{d1}^\ast = \{ {\bf{s}}:{s_1} = {s_2} = \cdots = {s_d} > 0\} \bigcap {{S_{d - 1}}} ,} \\ {S_{d2}^\ast = - S_{d1}^\ast.} \end{array}}\right.} \end{array}$$

Now define

$${{\cal M}_{d - 1}} = \{ S_{11}^ \ast ,\;S_{jk}^ \ast ,\;j = 2, \cdots ,d - 1,\;k = 1, \cdots ,d - j + 1,\;S_{d1}^ \ast ,\;S_{d2}^ \ast \} ,$$
((5.1))

and \({{\cal S}^ \ast } = \{ \pi E,\;\;E \in {{\cal M}_{d - 1}},\;\;\forall \pi \} \). We call \({{\cal M}_{d - 1}}\) a minimal exchangeable generator for Sd−1 and \({{\cal S}^ \ast }\) a minimal exchangeable partition for Sd−1.

Lemma 5.1 The elements of \({{\cal S}^ \ast }\) form an exchangeable partition of Sd−1.

Proof It is straightforward to see that \({{\cal S}^ \ast }\) satisfies (ii). To prove (i) and that members of \({{\cal S}^ \ast }\) are disjoint, note that \(S_{jk}^ \ast \cap S_{jl}^ \ast = \emptyset ,\;\;k \ne l,\;\;S_{jk}^ \ast \cap S_{lk}^ \ast = \emptyset ,\;\;j \ne l\), and

$$S_{j k}^{\ast} \bigcap \pi S_{j k}^{\ast}=\left\{\begin{array}{ll}\emptyset & {\text { if }\ \pi S_{j k}^{\ast} \neq S_{j k}^{\ast}} \\ {S_{j k}^{\ast}} & {\text { if }\ \pi S_{j k}^{\ast}=S_{j k}^{\ast}}\end{array}\right.S_{j k}^{\ast} \bigcap \pi S_{j k}^{\ast}=\left\{\begin{array}{ll}\emptyset & {\text { if }\ \pi S_{j k}^{\ast} \neq S_{j k}^{\ast}} \\ {S_{j k}^{\ast}} & {\text { if }\ \pi S_{j k}^{\ast}=S_{j k}^{\ast}}\end{array}\right..$$

Also \(\pi S_{jk}^ \ast \bigcap \eta S_{jl}^ \ast = \emptyset \), kl for any permutations π and η, to see this, assume that there are π, η, k < l such that \(\pi S_{jk}^ \ast \bigcap \eta S_{jl}^ \ast \ne \emptyset \). If \({\bf{z}} \in \pi S_{jk}^ \ast \bigcap \eta S_{jl}^ \ast \), then there are \({\bf{z}} \in S_{jk}^ \ast \), and \({\bf{y}} \in S_{jk}^ \ast \) for which \({\bf{z}} = \pi {\bf{x}} = ({x_{{\pi ^{ - 1}}1}},{x_{{\pi ^{ - 1}}2}}, \cdots ,{x_{{\pi ^{ - 1}}d}})\prime \in S_{jk}^ \ast \), and \({\bf{z}} = \eta {\bf{y}} = ({y_{{\eta ^{ - 1}}1}},{y_{{\eta ^{ - 1}}2}}, \cdots ,{y_{{\eta ^{ - 1}}d}})\prime \in \eta S_{jk}^ \ast \). But πx = ηy would simply that \({x_{{\pi ^{ - 1}}m}} = {y_{{\eta ^{ - 1}}m}}\), m = 1, …, d, which in tern implies

$${x_{{\pi ^{ - 1}}m}} = {y_m},\;\;m = 1,2, \cdots ,d.$$
((5.2))

But

$${x_1} < {x_2} < \cdots < {x_k} = {x_{k + 1}} = \cdots = {x_{k + j - 1}} < {x_{k + j}} < \cdots < {x_d},$$
((5.3))

and

$${y_1} < {y_2} < \cdots < {y_k} < \cdots < {y_l} = {y_{l + 1}} = \cdots = {y_{l + j - 1}} < {y_{l + j}} < \cdots < {y_d}.$$
((5.4))

Now substituting (5.2) in (5.4) provides that

$$\begin{array}{c} {{x_{{\pi ^{ - 1}}}}_{\eta 1} < {x_{{\pi ^{ - 1}}}}_{\eta 2} < \cdots < {x_{{\pi ^{ - 1}}}}_{\eta k} < \cdots < {x_{{\pi ^{ - 1}}}}_{\eta l} = {x_{{\pi ^{ - 1}}}}_{\eta l + 1} = \cdots } \\ {\quad = {x_{{\pi ^{ - 1}}}}_{\eta l + j - 1} < {x_{{\pi ^{ - 1}}}}_{\eta l + j} < \cdots < {x_{{\pi ^{ - 1}}}}_{\eta d}} \\ \end{array} $$

which is impossible, because of (5.3), unless π = η and k = l. Finally

$$\begin{array}{lll} S_{d-1} &=&\bigcup\limits_{\pi} \pi\{\mathbf{s} : s_{1} \leq s_{2} \leq \cdots \leq s_{d}\} \bigcap S_{d-1} \\ &=&(\bigcup\limits_{\pi} \pi S_{11}^{\ast}) \bigcup(\bigcup\limits_{j=2}^{d-1} \bigcup\limits_{k=1}^{(d-j+1)} \bigcup\limits_{\pi}\pi S_{j k}^{\ast}) \bigcup(S_{d 1}^{\ast} \bigcup S_{d2}^{\ast}), \end{array}$$

where \(\bigcup\nolimits_\pi {} \pi S_{jk}^ \ast \) is the union of all distinct permutations of \(S_{jk}^ \ast \).

A2. A Modification of the Theorem of Byczkwski, Nolan and Rajput (1993) Let us now introduce some notions and notations that were employed in Byczkwski, Nolan and Rajput (1993). Let (Y, ρ) be a metric space, let S be a compact subset of Y, and let M(ε; S) = minimal number of closed ρ—balls of radius ε needed to cover S. For a function f from S to C, a uniform models of continuity is a function δ(ε) such that, ρ(x, y) < δ(ε) implies ∣f(x) − f(y)∣ < ε.ε For a family \({\cal F}\) of functions from S to C, a modulus of continuity is a single δ(.) that simultaneously is a uniform modulus of continuity for every \(f \in {\cal F}\).

Lemma 5.2 Let \({\cal F}\) be a family of continuous functions mapping Sd−1 into C. Suppose for ε > 0, there is a modulus of continuity δ(ε) for \({\cal F}\). If Γ is a finite exchangeable Borel measure on Sd−1, then for any ε > 0 there is a discrete exchangeable spectral measure Γ* on Sd−1 for which

$$\mathop {\sup }\limits_{f \in {\cal F}} \left \vert {\int_{{S_{d - 1}}} {} f({\bf{s}})\Gamma (d{\bf{s}}) - \int_{{S_{d - 1}}} {} f({\bf{s}}){\Gamma ^ \ast }(d{\bf{s}})} \right \vert \le \varepsilon .$$

Proof Fix ε, set M = M(δ(ε/Γ(Sd−1)); Sd−1) and let \({\cal B} = \{ {B_1}, \cdots ,{B_M}\} \) be closed ρ-balls of radius δ(ε/Γ(Sd−1)) that cover Sd−1. Now form the class \({\cal G} = \{ B \cap E\;\;:\;\;B \in {\cal B},\;\;E \in {{\cal M}_{d - 1}}\} \), where \({{\cal M}_{d - 1}}\) a minimal exchangeable generator for Sd−1. The class \({\cal G}\) is a finite class, \({\cal G} = \{ {G_1}, \cdots ,{G_N}\} \). Now define \(E_1^\ast = {G_1},\;\;E_j^\ast = {G_j} - ({ \cup _{k < j}}{G_k}),\;\;j = 2, \cdots ,N\) and let \({{\cal E}^ \ast } = \{ E_1^ \ast , \cdots ,E_N^ \ast \} \). An argument similar to the one given in A1 reveals that \({\cal E} = \{ \pi {E^ \ast },\;\;{E^ \ast } \in {{\cal E}^ \ast },\;\;\forall \pi \} \) is an exchangeable partition of Sd−1. Now corresponding to each E*ε* fixed an s* ∈ E* such that ρ(s*, s) < 2δ, sE*. Now define Γ*(.) such that for each π to be supported by {πs*, s* ∈ ∀π}, and

$${\Gamma ^\ast}({\bf{s}}_j^ \ast ) = {\Gamma ^\ast}(\pi {\bf{s}}_j^ \ast ).$$

Then the finite measure Γ*(.) is exchangeable. For any \(f \in {\cal F}\),

$$\begin{array}{ll} &\left\vert \int\nolimits_{S_{d-1}} f(\mathbf{s}) \Gamma(d \mathbf{s})-\int\nolimits_{S_{d-1}} f(\mathbf{s}) \Gamma^{\ast}(d \mathbf{s})\right\vert \\=&\left\vert \int\nolimits_{\cup_{E \in \varepsilon}} f(\mathbf{s}) \Gamma(d \mathbf{s})-\int\nolimits_{\cup_{E \in \varepsilon}} f(\mathbf{s}) \Gamma^{\ast}(d \mathbf{s})\right\vert \\=&\left\vert \sum\limits_{\cup_{E \in \varepsilon}} \int\nolimits_{E}(f(\mathbf{s})-f(\mathbf{s}_{E})) \Gamma(d \mathbf{s})\right\vert \\ \leq & \sum\limits_{\cup_{E \in \varepsilon}} \int\nolimits_{E}\vert (f(\mathbf{s})-f(\mathbf{s}_{E}))\vert \Gamma(d \mathbf{s}) \\ \leq & \sum\limits_{\cup_{E \in \varepsilon}} \frac{\varepsilon}{\Gamma(S_{d-1})}\Gamma(S_{d-1})=\varepsilon, \end{array}$$

where \({{\bf{s}}_E} = {\bf{s}}_j^ \ast \), if \(E = \pi E_j^ \ast \).

Remark 5.1 When the appropriate mass points in {s: s1 ≤ … ≤ sd} ∩ Sd−1 are chosen, then a discrete exchangeable Γ* is constructed by permuting the selected point masses. A FORTRAN subroutine (DESM) is written to perform this process (it can be downloaded from the author’s homepage).

In the next theorem without loss of generality we assume that the location parameter is zero.

Theorem 5.1 Let X be a truly d-dimensional ESRV (d ≥ 2, 0 < α < 2), with spectral measure Γ and density p(x). Let ε > 0.

  1. (i)

    There is a discrete exchangeable spectral measure Γ* with corresponding exchangeable stable density p*(x) satisfying

    $$\mathop {\sup }\limits_{x \in {{\bf{R}}^d}} \vert{p}({\bf{x}}) - {p^ \ast }({\bf{x}})\vert \le \varepsilon .$$
  2. (ii)

    There is a discrete exchangeable spectral measure Γ** with corresponding ESRV X** which satisfies

    $$\mathop {\sup }\limits_{E \in Borel({{\bf{R}}^d})} \vert{P}({\bf{X}} \in E) - P({{\bf{X}}^{ \ast \ast }} \in E)\vert\; \le \varepsilon $$

Proof The result follows by using Lemma 5.2 and an argument very similar to the one given by Byczkwski, Nolan and Rajput (1993).

A3. Proof of Theorem 3.3 Follows by using Theorem 5.1 instead of Theorem 1 in Byczkwski, Nolan and Rajput (1993), see also Lemma 2 in Modarres and Nolan (1994).

A4. Proof of Lemma 3.2 Let \(S_{d - 1}^\Gamma \) be the support of Γ. Now define:

  • \(S_1^ \ast = \{ {\bf{s}}\;:\;{s_1} < {s_2} < \cdots < {s_d}\} \cap S_{d - 1}^\Gamma \),

  • \(S_2^ \ast = \{ {\bf{s}}\;:\;{s_1} = {s_2} \ne {s_3} \ne \cdots \ne {s_d}\} \cap S_{d - 1}^\Gamma \), and for j = 3, …, d − 1,

  • \(S_j^ \ast = \{ {\bf{s}}\;:\;{s_1} = {s_2} = \cdots = {s_j} \ne {s_{j + 1}} \ne {s_{j + 2}} \ne \cdots \ne {s_d}\} \cap S_{d - 1}^\Gamma \),

  • \(S_d^ \ast = \{ {\bf{s}}\;:\;{s_1} = {s_2} = \cdots = {s_d}\} \cap S_{d - 1}^\Gamma \). Note that \(S_j^ \ast \cap S_k^ \ast = \emptyset ,\;\;j \ne k\), and since Γ is exchangeable it follows from Lemma 3.1 that

    $$\bigcup\limits_j {} \bigcup\limits_\pi {} \pi (S_j^ \ast ) = S_{d - 1}^\Gamma ,$$

    where \(\bigcup\nolimits_\pi {} \;\;\pi (S_j^ \ast )\) denotes union over all different permutation of the \(S_j^ \ast \). Therefore we can write

    $$n = \# (S_{d - 1}^\Gamma ) = \# \left( {\bigcup\limits_j {} \bigcup\limits_\pi {} \pi (S_j^ * )} \right) = \sum\limits_j {} \# \left( {\bigcup\limits_\pi {} \pi (S_j^ \ast )} \right)$$

Now let \({k_j} = \# (S_j^ \ast )\), then \({k_j} = \# \pi (S_j^ \ast )\), for each π, j = 1, …, d − 1, and since there are d!/j! distinct \(\pi (S_j^ \ast )\),

$$n = \sum\limits_{j = 1}^d {} {{d!} \over {j!}}{k_j} = d\sum\limits_{j = 1}^{d - 1} {} {{(d - 1)!} \over {j!}}{k_j} + {k_d},$$

where kd ∈ {0, 1, 2}. Define \(k = \sum\nolimits_{j = 1}^{d - 1} {} {{(d - 1)!} \over {j!}}{k_j}\) to conclude the result.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadpour, A., Soltani, A.R. Exchangeable stable random vectors and their simulations. Computational Statistics 15, 205–217 (2000). https://doi.org/10.1007/s001800000028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800000028

Keywords

Navigation