Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Two algorithms for establishing a connection between correlations before and after ordinalization under a wide spectrum of nonnormal underlying bivariate distributions are developed by extending the iteratively found normal-based results via the power polynomials. These algorithms are designed to compute the polychoric correlation when the ordinal correlation is specified, and vice versa, along with the distributional properties of latent, continuous variables that are subsequently ordinalized through thresholds dictated by the marginal proportions. The method has broad applicability in the simulation and random number generation world where modeling the relationships between these correlation types is of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amatya A, Demirtas H (2015) Simultaneous generation of multivariate mixed data with Poisson and normal marginals. J Stat Comput Simul 85:3129–3139

    Article  MathSciNet  Google Scholar 

  • Barbiero A, Ferrari PA (2015) Simulation of ordinal and discrete variables with given correlation matrix and marginal distributions, R package GenOrd. https://cran.r-project.org/web/packages/GenOrd

  • Cario MC, Nelson BR (1997) Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix (Technical Report). Department of Industrial Engineering and Management Services Northwestern University, Evanston, IL, USA

  • Demirtas H (2004) Simulation-driven inferences for multiply imputed longitudinal datasets. Stat Neerl 58:466–482

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas H (2005) Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Stat Med 24:2345–2363

    Article  MathSciNet  Google Scholar 

  • Demirtas H (2006) A method for multivariate ordinal data generation given marginal distributions and correlations. J Stat Comput Simul 76:1017–1025

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas H (2007) Practical advice on how to impute continuous data when the ultimate interest centers on dichotomized outcomes through pre-specified thresholds. Commun Stat Simul Comput 36:871–889

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas H (2016a) A note on the relationship between the phi coefficient and the tetrachoric correlation under nonnormal underlying distributions. Am Stat. doi:10.1080/00031305.2015.1077161

  • Demirtas H (2016b) Concurrent generation of binary and nonnormal continuous data through fifth order power polynomials. Commun Stat Simul Comput. doi:10.1080/03610918.2014.963613

  • Demirtas H, Arguelles LM, Chung H, Hedeker D (2007) On the performance of bias-reduction techniques for variance estimation in approximate Bayesian bootstrap imputation. Comput Stat Data Anal 51:4064–4068

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas H, Doganay B (2012) Simultaneous generation of binary and normal data with specified marginal and association structures. J Biopharm Stat 22:223–236

    Article  MathSciNet  Google Scholar 

  • Demirtas H, Freels SA, Yucel RM (2008) Plausibility of multivariate normality assumption when multiply imputing non-Gaussian continuous outcomes: a simulation assessment. J Stat Comput Simul 78:69–84

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas H, Hedeker D (2007) Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses. Stat Med 26:782–799

    Article  MathSciNet  Google Scholar 

  • Demirtas H, Hedeker D (2008a) Multiple imputation under power polynomials. Commun Stat Simul Comput 37:1682–1695

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas H, Hedeker D (2008b) An imputation strategy for incomplete longitudinal ordinal data. Stat Med 27:4086–4093

    Article  MathSciNet  Google Scholar 

  • Demirtas H, Hedeker D (2011) A practical way for computing approximate lower and upper correlation bounds. Am Stat 65:104–109

    Article  MathSciNet  MATH  Google Scholar 

  • Demirtas H, Hedeker D (2016) Computing the point-biserial correlation under any underlying continuous distribution. Commun Stat Simul Comput. doi:10.1080/03610918.2014.920883

  • Demirtas H, Hedeker D, Mermelstein JM (2012) Simulation of massive public health data by power polynomials. Stat Med 31:3337–3346

    Article  MathSciNet  Google Scholar 

  • Demirtas H, Schafer JL (2003) On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Stat Med 22:2553–2575

    Article  Google Scholar 

  • Demirtas H, Yavuz Y (2015) Concurrent generation of ordinal and normal data. J Biopharm Stat 25:635–650

    Article  Google Scholar 

  • Emrich JL, Piedmonte MR (1991) A method for generating high-dimensional multivariate binary variates. Am Stat 45:302–304

    Google Scholar 

  • Ferrari PA, Barbiero A (2012) Simulating ordinal data. Multivar Behav Res 47:566–589

    Article  Google Scholar 

  • Fleishman AI (1978) A method for simulating non-normal distributions. Psychometrika 43:521–532

    Article  MATH  Google Scholar 

  • Fréchet M (1951) Sur les tableaux de corrélation dont les marges sont données. Annales de l’Université de Lyon Section A 14:53–77

    MATH  Google Scholar 

  • Headrick TC (2002) Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions. Comput Stat Data Anal 40:685–711

    Article  MathSciNet  MATH  Google Scholar 

  • Headrick TC (2010) Statistical simulation: power method polynomials and other transformations. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Hoeffding W (1940) Scale-invariant correlation theory. In: Fisher NI, Sen PK (eds) The collected works of Wassily Hoeffding. Springer, New York, pp 57–107 (1994)

    Google Scholar 

  • Inan G, Demirtas H (2015) Data generation with binary and continuous non-normal components, R package BinNonNor. https://cran.r-project.org/web/packages/BinNonNor

  • Shi Y, Demirtas H (2015) Simultaneous generation of count and continuous data, R package PoisNonNor. https://cran.r-project.org/web/packages/PoisNonNor

  • Vale CD, Maurelli VA (1983) Simulating multivariate nonnormal distributions. Psychometrika 48:465–471

    Article  MATH  Google Scholar 

  • Wang Y, Demirtas H (2015), Concurrent generation of binary, ordinal and continuous data, R package BinOrdNonNor. https://cran.r-project.org/web/packages/BinOrdNonNor

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Demirtas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirtas, H., Ahmadian, R., Atis, S. et al. A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization. Comput Stat 31, 1385–1401 (2016). https://doi.org/10.1007/s00180-016-0653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0653-7

Keywords

Navigation