Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bayesian inference using a noninformative prior for linear Gaussian random coefficient regression with inhomogeneous within-class variances

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A Bayesian inference for a linear Gaussian random coefficient regression model with inhomogeneous within-class variances is presented. The model is motivated by an application in metrology, but it may well find interest in other fields. We consider the selection of a noninformative prior for the Bayesian inference to address applications where the available prior knowledge is either vague or shall be ignored. The noninformative prior is derived by applying the Berger and Bernardo reference prior principle with the means of the random coefficients forming the parameters of interest. We show that the resulting posterior is proper and specify conditions for the existence of first and second moments of the marginal posterior. Simulation results are presented which suggest good frequentist properties of the proposed inference. The calibration of sonic nozzle data is considered as an application from metrology. The proposed inference is applied to these data and the results are compared to those obtained by alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berger J, Bernardo JM (1992) Reference priors in a variance components problem. In: Goel P (ed) Bayesian analysis in statistics and econometrics. Lecture notes in statistics, vol 75. Springer, New York, pp 177–194

    Chapter  Google Scholar 

  • Berger J, Bernardo JM (1992c) On the development of reference priors. In: Bernardo JM, Berger J, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 4. University Press, Oxford, pp 35–60

    Google Scholar 

  • Berger J, Sun D (2008) Objective priors for the bivariate normal model. Ann Stat 36(2):963–982

    Article  MathSciNet  MATH  Google Scholar 

  • Berger J, Bernardo JM, Sun D (2009) The formal definition of reference priors. Ann Stat 37(5):905–938

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar O, Elster C (2014) Analytical derivation of the reference prior by sequential maximization of shannon’s mutual information in the multi-group parameter case. J Stat Plan Inference 147:106–116

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar O, Link A, Elster C (2016) Objective Bayesian inference for a generalized marginal random effects model. Bayesian Anal 11(1):25–45

    Article  MathSciNet  Google Scholar 

  • Browne WJ, Draper D (2006) A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Anal 1(3):473–514

    MathSciNet  MATH  Google Scholar 

  • Clarke B, Yuan A (2004) Partial information reference priors: derivation and interpretations. J Stat Plan Inference 123(2):313–345

    Article  MathSciNet  MATH  Google Scholar 

  • Daniels MJ (1999) A prior for the variance in hierarchical models. Can J Stat 27(3):567–578

    Article  MathSciNet  MATH  Google Scholar 

  • Datta GS, Ghosh M (1995) Some remarks on noninformative priors. J Am Stat Assoc 90(432):1357–1363

    Article  MathSciNet  MATH  Google Scholar 

  • Datta GS, Ghosh M (1996) On the invariance of noninformative priors. Ann Stat 24:141–159

    Article  MathSciNet  MATH  Google Scholar 

  • Datta GS, Smith DD (2003) On propriety of posterior distributions of variance components in small area estimation. J Stat Plan Inference 112:175–183

    Article  MathSciNet  MATH  Google Scholar 

  • Foulley JL, San Cristobal M, Gianola D, Im S (1992) Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models. Comput Stat Data An 13(3):291–305

    Article  MATH  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1:515–533

    Article  MathSciNet  MATH  Google Scholar 

  • Hobert JP, Casella G (1996) The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J Am Stat Assoc 91(436):1461–1473. doi:10.1080/01621459.1996.10476714

    Article  MathSciNet  MATH  Google Scholar 

  • Lütkepohl H (1996) Handbook of matrices, 1st edn. Wiley, New York

    MATH  Google Scholar 

  • McCulloch CE, Searle SR (2008) Generalized, linear, and mixed models, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, Berlin

    Book  MATH  Google Scholar 

  • Pretorius AL, Van Der Merwe AJ (2002) Reference and probability-matching priors in Bayesian analysis of mixed linear models. J Anim Breed Genet 119(5):311–324

    Article  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New York

    Book  MATH  Google Scholar 

  • Sun D, Tsutakawa RK, He Z (2001) Propriety of posteriors with improper priors in hierarchical linear mixed models. Stat Sin 11:77–95

    MathSciNet  MATH  Google Scholar 

  • Tsai MY, Hsiao CK (2008) Computation of reference Bayesian inference for variance components in longitudinal studies. Comput Stat 23(4):587–604

    Article  MathSciNet  MATH  Google Scholar 

  • Wand MP (2007) Fisher information for generalised linear mixed models. J Multivar Anal 98(7):1412–1416

    Article  MathSciNet  MATH  Google Scholar 

  • Wright J, Mickan B, Paton R, Park KA, Si Nakao, Chahine K, Arias R (2007) CIPM key comparison for low-pressure gas flow: CCM. FF-K6. Metrologia 44(1A):07,008

    Article  Google Scholar 

  • Yang R, Berger J (1997) A catalog of noninformative priors. Technical report. Duke University, ISDS 97–42

  • Yang R, Chen MH (1995) Bayesian analysis for random coefficient regression models using noninformative priors. J Multivar Anal 55:283–311

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for helpful comments and suggestions, and Bodo Mickan (PTB) for providing the sonic nozzle calibration data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Wübbeler.

Appendix

Appendix

Subsequently we prove Theorem 2, i.e., propriety of the reference posterior. To this end, and similarly to Yang and Chen (1995), the additional interim variables \({\varvec{\beta }}_i, i=1, \ldots , K\) are used as follows. We employ the relation

$$\begin{aligned}&l({\varvec{\theta }},{\varvec{\gamma }^2},{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K)= \prod _{i=1}^K \frac{e^{-\frac{1}{2} \left( {\varvec{y}}_i - {\varvec{X}}_i {\varvec{\theta }}\right) ^T {\varvec{V}}_i^{-1} \left( {\varvec{y}}_i - {\varvec{X}}_i {\varvec{\theta }}\right) }}{\sqrt{ (2 \pi )^{n_i} det\left( {\varvec{V}}_i \right) }} \nonumber \\&\quad \propto \int \psi ({\varvec{\theta }},{\varvec{\beta }}_1, \ldots , {\varvec{\beta }}_K,{\varvec{\gamma }^2},{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K) \text {d}{\varvec{\beta }}_1 \cdots \text {d}{\varvec{\beta }}_K , \end{aligned}$$
(26)

where

$$\begin{aligned}&\psi ({\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K,{\varvec{\gamma }^2},{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K) \nonumber \\&\quad =\left( \prod _{i=1}^{K} \sigma _i^{-n_i} e^{- \frac{1}{2 \sigma _i^2} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) } \right) \nonumber \\&\qquad \times \,\left( \prod _{l=1}^{p} \gamma _l^{-K} \right) \left( \prod _{i=1}^{K} e^{- \frac{1}{2} \left( {\varvec{\beta }}_i - {\varvec{\theta }}\right) ^T {\varvec{\varLambda }}^{-1} \left( {\varvec{\beta }}_i - {\varvec{\theta }}\right) } \right) , \end{aligned}$$
(27)

and \({\varvec{V}}_i=\sigma _i^2 {\varvec{I}}+ {\varvec{X}}_i {\varvec{\varLambda }}{\varvec{X}}_i^T\). In the following, we consider

$$\begin{aligned}&f\left( {\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K,{\varvec{\gamma }^2},{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K\right) \nonumber \\&\quad =\pi \left( {\varvec{\theta }},{\varvec{\gamma }^2},{\varvec{\sigma }^2}\right) \psi \left( {\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K,{\varvec{\gamma }^2},{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K\right) , \end{aligned}$$
(28)

where \(\pi ({\varvec{\theta }},{\varvec{\gamma }^2},{\varvec{\sigma }^2})\) denotes the reference prior (18).

We will show that the function \(f({\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K,{\varvec{\gamma }^2}, {\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K)\) is proper, which implies the theorem. For ease of notation \(f({\varvec{\theta }}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K)\), for example, will denote \(f({\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K,{\varvec{\gamma }^2},{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K)\) after integrating out all variables but \({\varvec{\theta }}\). We start by integrating out \({\varvec{\gamma }^2}\) and, in using Corollary 1, we get

$$\begin{aligned}&f\left( {\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K,{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K\right) \nonumber \\&\quad \le c \int \psi \left( {\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K,{\varvec{\gamma }^2},{\varvec{\sigma }^2}; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K\right) \nonumber \\&\qquad \times \sqrt{\varPhi ({\varvec{\sigma }^2})} \left( \prod _{l=1}^{p} \gamma _l^{-3/2} \right) \left( \prod _{i=1}^{K} \sigma _i^{-2} \right) \text {d}{\varvec{\gamma }^2}\nonumber \\&\quad = c \sqrt{\varPhi ({\varvec{\sigma }^2})} \left( \prod _{i=1}^K \sigma _i^{-(n_i+2)} e^{- \frac{1}{2 \sigma _i^2} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) } \right) \nonumber \\&\qquad \times \int \left( \prod _{l=1}^{p} \gamma _l^{-(K+3/2)} \right) \left( \prod _{i=1}^{K} e^{- \frac{1}{2} \left( {\varvec{\beta }}_i - {\varvec{\theta }}\right) ^T {\varvec{\varLambda }}^{-1} \left( {\varvec{\beta }}_i - {\varvec{\theta }}\right) } \right) \text {d}{\varvec{\gamma }^2}\nonumber \\&\quad \propto \sqrt{\varPhi ({\varvec{\sigma }^2})} \left( \prod _{i=1}^{K} \sigma _i^{-(n_i+2)} e^{- \frac{1}{2 \sigma _i^2} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) } \right) \nonumber \\&\qquad \times \prod _{l=1}^{p} \left( \sum _{i=1}^K ({\varvec{\beta }}_i-{\varvec{\theta }})_l^2 \right) ^{-(K-1/2)/2} , \end{aligned}$$
(29)

where for evaluating the integral in the last step \(K \ge 1\) is required which is satisfied due to our assumption \(K\ge 2\). In the next step we integrate out \({\varvec{\sigma }^2}\), yielding

$$\begin{aligned}&f\left( {\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K\right) \nonumber \\&\quad \le c_1 \left( \prod _{l=1}^{p} \left( \sum _{i=1}^K ({\varvec{\beta }}_i-{\varvec{\theta }})_l^2 \right) ^{-(K-1/2)/2} \right) \nonumber \\&\qquad \times \int \sqrt{\varPhi ({\varvec{\sigma }^2})} \left( \prod _{i=1}^{K} \sigma _i^{-(n_i+2)} e^{- \frac{1}{2 \sigma _i^2} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) } \right) \text {d}{\varvec{\sigma }^2}\nonumber \\&\quad \le c_1 \left( \prod _{l=1}^{p} \left( \sum _{i=1}^K ({\varvec{\beta }}_i-{\varvec{\theta }})_l^2 \right) ^{-(K-1/2)/2} \right) \nonumber \\&\qquad \times \int \left( 1 + \varPhi ({\varvec{\sigma }^2}) \right) \left( \prod _{i=1}^{K} \sigma _i^{-(n_i+2)} e^{- \frac{1}{2 \sigma _i^2} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) } \right) \text {d}{\varvec{\sigma }^2}\nonumber \\&\quad = c_1 \left( \prod _{l=1}^{p} \left( \sum _{i=1}^K ({\varvec{\beta }}_i-{\varvec{\theta }})_l^2 \right) ^{-(K-1/2)/2} \right) \nonumber \\&\qquad \times \int \left( 1 + \sum _{i_1=1}^K \cdots \sum _{i_p=1}^K \prod _{l=1}^p \sigma _{i_l}^{-1} \right) \nonumber \\&\qquad \times \,\left( \prod _{i=1}^{K} \frac{ e^{- \frac{1}{2 \sigma _i^2} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) } }{\sigma _i^{n_i+2}} \right) \text {d}{\varvec{\sigma }^2}\end{aligned}$$
(30)

for some \(c_1>0\). For the integral in the last two lines of (30) we get

$$\begin{aligned}&\int \left( 1 + \sum _{i_1=1}^K \cdots \sum _{i_p=1}^K \prod _{l=1}^p \sigma _{i_l}^{-1} \right) \left( \prod _{i=1}^{K} \frac{ e^{- \frac{1}{2 \sigma _i^2} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) } }{\sigma _i^{n_i+2}} \right) \text {d}{\varvec{\sigma }^2}\nonumber \\&\quad = \prod _{i=1}^{K} \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \nonumber \\&\qquad + \sum _{i_1=1}^K \cdots \sum _{i_p=1}^K \prod _{i=1}^{K} \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-(n_i+m_i(i_1,\ldots ,i_p))/2} , \end{aligned}$$
(31)

where \(0 \le m_i(i_1,\ldots ,i_p) \le p\). Since for \(i=1, \ldots , K\)

$$\begin{aligned} \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) = \left( {\varvec{\beta }}_i-\widehat{{\varvec{\beta }}}_i \right) ^T {\varvec{X}}_i^T {\varvec{X}}_i \left( {\varvec{\beta }}_i-\widehat{{\varvec{\beta }}}_i \right) + \delta _i^2 \end{aligned}$$
(32)

holds with \(\delta _i\ne 0\), where both \(\widehat{{\varvec{\beta }}}_i\) and \(\delta _i\) depend only on \({\varvec{X}}_i\) and \({\varvec{y}}_i\), a constant \(c_2>0\) exists, so that

$$\begin{aligned}&\left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-(n_i+m_i(i_1,\ldots ,i_p))/2} \nonumber \\&\quad \le c_2 \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \end{aligned}$$
(33)

holds for all such terms entering in (31). Using (30), we hence get

$$\begin{aligned}&f\left( {\varvec{\theta }},{\varvec{\beta }}_1, \ldots ,{\varvec{\beta }}_K; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K\right) \nonumber \\&\quad \le c_3 \left( \prod _{l=1}^{p} \left( \sum _{i=1}^K ({\varvec{\beta }}_i-{\varvec{\theta }})_l^2 \right) ^{-(K-1/2)/2} \right) \nonumber \\&\qquad \times \,\left( \prod _{i=1}^{K} \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \right) \end{aligned}$$
(34)

for some \(c_3 >0\). Next we introduce the notation

$$\begin{aligned} \sum _{i=1}^K ({\varvec{\beta }}_i-{\varvec{\theta }})_l^2 = K (\zeta _l-\theta _l)^2 +(K-1) s_l^2 , \end{aligned}$$
(35)

where \(\zeta _l=\sum _{i=1}^K ({\varvec{\beta }}_i)_l /K\), \(\theta _l=({\varvec{\theta }})_l\), and \(s_l^2=\sum _{i=1}^K (({\varvec{\beta }}_i)_l-\zeta _l)^2 /(K-1)\). Integrating (34) over \({\varvec{\theta }}\) yields

$$\begin{aligned}&f\left( {\varvec{\beta }}_1 ,\ldots ,{\varvec{\beta }}_K; {\varvec{y}}_1, \ldots ,{\varvec{y}}_K\right) \nonumber \\&\quad \le c_4 \left( \prod _{l=1}^{p} \frac{\int \left( 1 + u^2 \right) ^{-(K-1/2)/2} \text {d}u}{s_l^{(K-3/2)}} \right) \nonumber \\&\qquad \,\times \left( \prod _{i=1}^{K} \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \right) \nonumber \\&\quad \propto \left( \prod _{l=1}^{p} s_l^{-(K-3/2)} \right) \left( \prod _{i=1}^{K} \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \right) \end{aligned}$$
(36)

for some \(c_4>0\), where the relation \(K>3/2\) is required so that the integrals remain finite. In order to show that (36) is proper we proceed as follows. We rearrange \(({\varvec{\beta }}_1^T, \ldots , {\varvec{\beta }}_K^T)^T\) as \((({\varvec{\beta }}_1)_1,({\varvec{\beta }}_2)_1 \ldots , ({\varvec{\beta }}_K)_1, ({\varvec{\beta }}_1)_2, ({\varvec{\beta }}_2)_2\ldots )^T\), and in writing the latter as \(({\varvec{v}}_1^T, \ldots , {\varvec{v}}_p^T)^T\) we decompose each \({\varvec{v}}_l\) according to \({\varvec{v}}_l = \zeta _l {\varvec{1}}+ {\varvec{z}}_l\) with \({\varvec{1}}=(1, \ldots ,1)^T\), where \({\varvec{z}}_l^T {\varvec{1}}=0\) and \(\zeta _l={\varvec{v}}_l^T {\varvec{1}}/K\). Hence \(s_l^2={\varvec{z}}_l^T {\varvec{z}}_l /(K-1)\) holds. The inequality

$$\begin{aligned} \int _{{\varvec{z}}_l^T {\varvec{z}}_l \le 1} s_l^{-(K-3/2)} ~ \text {d}{\varvec{z}}_l < \infty \end{aligned}$$
(37)

follows immediately from writing \({\varvec{z}}_l=z_1 {\varvec{b}}_1 + \cdots + z_{K-1} {\varvec{b}}_{K-1}\) for some orthonormal basis \({\varvec{b}}_1, \ldots {\varvec{b}}_{K-1}\) of the subspace in \(\mathbb {R}^K\) orthogonal to \({\varvec{1}}\in \mathbb {R}^K \), and changing to spherical coordinates with \(\text {d}z_1 \cdots \text {d}z_{K-1} = r^{K-2} \text {d}r \text {d}\varOmega _{K-1}\), where \(\text {d}\varOmega _{K-1}\) denotes the volume element on the unit sphere in dimension \(K-1\). Since \(s_l=r\), (37) remains finite because \(\int _{0 \le \widetilde{r} \le 1} \widetilde{r}^{-(K- 3/2-(K-2))} \text {d}\widetilde{r} < \infty \).

Furthermore, we observe that

$$\begin{aligned} s_l^{-(K-3/2)} \le (K-1)^{(K/2-3/4)} \quad \text {for all} ~~ {\varvec{z}}_l^T {\varvec{z}}_l >1 \end{aligned}$$
(38)

holds and, by using

$$\begin{aligned} \left( \prod _{i=1}^{K} \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \right) \le c_5 \end{aligned}$$
(39)

for some \(c_5>0\) [cf. (32)], we conclude that (36) is proper, as

$$\begin{aligned} \int \prod _{i=1}^{K} \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \text {d}{\varvec{\beta }}_1 \cdots \text {d}{\varvec{\beta }}_K < \infty \end{aligned}$$
(40)

holds. The latter condition is satisfied since, in again using (32) and utilizing the fact that \({\varvec{X}}_i^T {\varvec{X}}_i\) is positive definite, we can write

$$\begin{aligned}&\int \left( \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) ^T \left( {\varvec{y}}_i-{\varvec{X}}_i {\varvec{\beta }}_i \right) \right) ^{-n_i/2} \text {d}{\varvec{\beta }}_i \nonumber \\&\quad = \int \left( \left( {\varvec{\beta }}_i-\widehat{{\varvec{\beta }}}_i \right) ^T {\varvec{X}}_i^T {\varvec{X}}_i \left( {\varvec{\beta }}_i-\widehat{{\varvec{\beta }}}_i \right) + \delta _i^2 \right) ^{-n_i/2} \text {d}{\varvec{\beta }}_i \nonumber \\&\quad \propto \int \left( \widetilde{{\varvec{\beta }}}_i^T \widetilde{{\varvec{\beta }}}_i + \delta _i^2 \right) ^{-n_i/2} \text {d}\widetilde{{\varvec{\beta }}}_i \nonumber \\&\quad \propto \int \left( r^2 + \delta _i^2 \right) ^{-n_i/2} r^{(p-1)} \text {d}r \text {d}\varOmega _p , \end{aligned}$$
(41)

which remains finite for \(n_i >p\) and hence concludes the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elster, C., Wübbeler, G. Bayesian inference using a noninformative prior for linear Gaussian random coefficient regression with inhomogeneous within-class variances. Comput Stat 32, 51–69 (2017). https://doi.org/10.1007/s00180-015-0641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0641-3

Keywords

Navigation