Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

ANCOVA: a heteroscedastic global test when there is curvature and two covariates

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

For two independent groups, let \(M_j(\mathbf {X})\) be some conditional measure of location for the jth group associated with some random variable Y given \(\mathbf {X}=(X_1, X_2)\). Let \(\Omega =\{\mathbf {X}_1, \ldots , \mathbf {X}_K\}\) be a set of K points to be determined. An extant technique can be used to test \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for each \(\mathbf {X} \in \Omega \) without making any parametric assumption about \(M_j(\mathbf {X})\). But there are two general reasons to suspect that the method can have relatively low power. The paper reports simulation results on an alternative approach that is designed to test the global hypothesis \(H_0\): \(M_1(\mathbf {X})=M_2(\mathbf {X})\) for all \(\mathbf {X} \in \Omega \). The main result is that the new method offers a distinct power advantage. Using data from the Well Elderly 2 study, it is illustrated that the alternative method can make a practical difference in terms of detecting a difference between two groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bellman RE (1961) Adaptive control processes. Princeton University Press, Princeton

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley JV (1978) Robustness? Br J Math Stat Psychol 31:144–152

    Article  Google Scholar 

  • Chida Y, Steptoe A (2009) Cortisol awakening response and psychosocial factors: a systematic review and meta-analysis. Biol Psychol 80:265–278

    Article  Google Scholar 

  • Clark F, Jackson J, Carlson M, Chou C-P, Cherry BJ, Jordan-Marsh M, Knight BG, Mandel D, Blanchard J, Granger DA, Wilcox RR, Lai MY, White B, Hay J, Lam C, Marterella A, Azen SP (2011) Effectiveness of a lifestyle intervention in promoting the well-being of independently living older people: results of the Well Elderly 2 Randomise Controlled Trial. J Epidemiol Community Health 66:782–790. doi:10.1136/jech.2009.099754

    Article  Google Scholar 

  • Clow A, Thorn L, Evans P, Hucklebridge F (2004) The awakening cortisol response: methodological issues and significance. Stress 7:29–37

    Article  Google Scholar 

  • Cousins RD (2008) Annotated bibliography of some papers on combining significances or p values. arXiv:0705.2209v2

  • Donoho DL, Gasko M (1992) Breakdown properties of the location estimates based on halfspace depth and projected outlyingness. Ann Stat 20:1803–1827

    Article  MathSciNet  MATH  Google Scholar 

  • Eakman AM, Carlson ME, Clark FA (2010) The meaningful activity participation assessment: a measure of engagement in personally valued activities. Int J Aging Hum Dev 70:299–317

    Article  Google Scholar 

  • Efromovich S (1999) Nonparametric curve estimation: methods, theory and applications. Springer, New York

    MATH  Google Scholar 

  • Eubank RL (1999) Nonparametric regression and spline smoothing. Marcel Dekker, New York

    MATH  Google Scholar 

  • Foley K, Reed P, Mutran E et al (2002) Measurement adequacy of the CESD among a sample of older African Americans. Psychiatr Res 109:61–69

    Article  Google Scholar 

  • Fox J (2001) Multiple and generalized nonparametric regression. Sage, Thousands Oaks

    MATH  Google Scholar 

  • Frigge M, Hoaglin DC, Iglewicz B (1989) Some implementations of the boxplot. Am Stat 43:50–54

    Google Scholar 

  • Györfi L, Kohler M, Krzyzk A, Walk H (2002) A distribution-free theory of nonparametric regression. Springer, New York

    Book  MATH  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics. Wiley, New York

    MATH  Google Scholar 

  • Härdle W (1990) Applied nonparametric regression. Econometric society monographs no. 19. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hays RD, Sherbourne CD, Mazel RM (1993) The rand 36-item health survey 1.0. Health Econ 2:217–227

    Article  Google Scholar 

  • Heritier S, Cantoni E, Copt S, Victoria-Feser M-P (2009) Robust methods in Biostatistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Hoaglin DC (1985) Summarizing shape numerically: the g-and-h distribution. In: Hoaglin D, Mosteller F, Tukey J (eds) Exploring data tables trends and shapes. Wiley, New York, pp 461–515

    Google Scholar 

  • Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ, Ronchetti E (2009) Robust statistics, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Jackson J, Mandel D, Blanchard J, Carlson M, Cherry B, Azen S, Chou C-P, Jordan-Marsh M, Forman T, White B, Granger D, Knight B, Clark F (2009) Confronting challenges in intervention research with ethnically diverse older adults: the USC Well Elderly II trial. Clin Trials 6:90–101

    Article  Google Scholar 

  • Lewinsohn PM, Hoberman HM, Rosenbaum M (1988) A prospective study of risk factors for unipolar depression. J Abnorm Psychol 97:251–264

    Article  Google Scholar 

  • Liu RY, Parelius JM, Singh K (1999) Multivariate analysis by data depth: descriptive statistics, graphics and inference. Ann Stat 27:783–858

    MathSciNet  MATH  Google Scholar 

  • Maronna RA, Martin DR, Yohai VJ (2006) Robust statistics: theory and methods. Wiley, New York

    Book  MATH  Google Scholar 

  • McHorney CA, Ware JE, Raozek AE (1993) The MOS 36-item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care 31:247–263

    Article  Google Scholar 

  • Radloff L (1977) The CESD scale: a self report depression scale for research in the general population. Appl Psychol Meas 1:385–401

    Article  Google Scholar 

  • Rom DM (1990) A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77:663–666

    Article  MathSciNet  Google Scholar 

  • Rosenberger JL, Gasko M (1983) Comparing location estimators: trimmed means, medians, and trimean. In: Hoaglin D, Mosteller F, Tukey J (eds) Understanding Robust and exploratory data analysis. Wiley, New York, pp 297–336

    Google Scholar 

  • Staudte RG, Sheather SJ (1990) Robust estimation and testing. Wiley, New York

    Book  MATH  Google Scholar 

  • Wilcox RR (2012) Introduction to robust estimation and hypothesis testing, 3rd edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Yuen KK (1974) The two sample trimmed t for unequal population variances. Biometrika 61:165–170

    Article  MATH  Google Scholar 

  • Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS (2002) Truncated product method for combining p values. Gen Epidemiol 22:170–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rand R. Wilcox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilcox, R.R. ANCOVA: a heteroscedastic global test when there is curvature and two covariates. Comput Stat 31, 1593–1606 (2016). https://doi.org/10.1007/s00180-015-0640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0640-4

Keywords

Navigation