Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fall back equilibrium for \(2 \times n\) bimatrix games

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we provide a characterization of the set of fall back equilibria for \(2 \times n\) bimatrix games. Furthermore, for this type of games we discuss the relation between the set of fall back equilibria and the sets of perfect, proper and strictly perfect equilibria. In order to do this we reformulate the existing characterizations for these three equilibrium concepts by the use of refinement-specific subgames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A strategy \(q \in \Delta _N\) is dominated if there exists a strategy \(\bar{q}\in \Delta _N\) such that \(pB\bar{q}\ge pBq\) for all \(p \in \Delta _M\) and \(pB\bar{q}>pBq\) for some \(p \in \Delta _M\).

  2. In Kleppe et al. (2012a) the notation \(PS\) is used for the set of pure secondary replies. However, to clearly distinguish between the set of pure solutions and the set of pure secondary replies, we use the notation \(\textit{PSR}\) for the latter in this paper.

References

  • Borm P (1992) On perfectness concepts for bimatrix games. OR Spektrum 14:33–42

    Article  MathSciNet  MATH  Google Scholar 

  • Borm P, Geijsberts A, Tijs S (1988) A geometric-combinatorial approach to bimatrix games. Methods Oper Res 59:199–209

    Google Scholar 

  • Borm P, Jansen M, Potters J, Tijs S (1993) On the structure of the set of perfect equilibria in bimatrix games. OR Spektrum 15:17–20

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen M (1993) On the set of proper equilibria of a bimatrix game. Int J Game Theory 22:97–106

    Article  MATH  Google Scholar 

  • Kleppe J, Borm P, Hendrickx R (2012a) Fall back equilibrium. Eur J Oper Res 223:372–379

    Article  MathSciNet  Google Scholar 

  • Kleppe J, Borm, P, Hendrickx R (2012b) A strategic foundation for proper equilibrium. CentER Discussion Paper 093. Tilburg University, Tilburg

  • Lemke C, Howson J (1964) Equilibrium points of bimatrix games. J Soc Ind Appl Math 12:413–423

    Article  MathSciNet  MATH  Google Scholar 

  • Myerson R (1978) Refinements of the Nash equilibrium point concept. Int J Game Theory 7:73–80

    Article  MathSciNet  MATH  Google Scholar 

  • Nash J (1951) Non-cooperative games. Ann Math 54:286–295

    Article  MathSciNet  MATH  Google Scholar 

  • Okada A (1984) Strictly perfect equilibrium points of bimatrix games. Int J Game Theory 13:145–154

    Article  MATH  Google Scholar 

  • Papadimitriou CH (2001) Algorithms, games, and the Internet. In: In STOC. ACM Press, pp 749–753

  • Porter R, Nudelman E, Shoham Y (2004) Simple search methods for finding Nash equilibrium. Proc AAAI 04:664–669

    Google Scholar 

  • Selten R (1975) Reexamination of the perfectness concept for equilibrium points in extensive games. Int J Game Theory 4:25–55

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker A (1960) Solving a matrix game by linear programming. J Res Dev 4:507–517

    MATH  Google Scholar 

  • Vermeulen A, Jansen M (1996) Are strictly perfect equilibria proper? A counterexample. J Optim Theory Appl 90:225–230

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kleppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleppe, J., Borm, P. & Hendrickx, R. Fall back equilibrium for \(2 \times n\) bimatrix games. Math Meth Oper Res 78, 171–186 (2013). https://doi.org/10.1007/s00186-013-0438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-013-0438-5

Keywords

JEL Classification

Navigation