Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Adaptive support vector machine-based surface quality evaluation and temperature monitoring. Application to billet continuous casting process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A method for surface quality evaluation and temperature monitoring of the billet in continuous casting is considered in this paper. This method uses the difference between the measured and the filtered temperature computed using an adaptive support vector machine method. The temperature field, measured by an infrared camera, is affected by an important noise called calamine (a metal oxide generated during the cooling process). The quality of the billet’s surface temperature is connected to the secondary cooling behavior, and therefore an evaluation of the calamine effect is needed. Methods such as soft sensing and adaptive support vector machine are used for a global evaluation of calamine intensity on the monitored area of the billet in continuous casting. This kind of approaches is applied in continuous casting process for constructing a complementary condition monitoring system, which allows an online calamine evaluation. Simulation results, based on the measured surface temperature and the adaptive support vector machine analysis, showed that this new combined approach is easily implementable and gives good results when applied online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Bealy M, Leskinen N, Fredriksson H (1995) Simulation of cooling conditions in secondary cooling zones in continuous casting process. Ironmak Steelmak 22(3):246

    Google Scholar 

  2. Holger B (1994). Computersimulation thermischer und mechanischer Vorgänge beim Brammenstranggießen von Stahl, Dissertation Dr-Ing No. 94.10186/3 Bergakademie Freiberg

  3. Biao W, Zhen-ping JI, Wen-hong LIU, Jiao-cheng MA, Zhi XIE (2008) Application of hot strength and ductility test to optimization of secondary cooling system in billet continuous casting process. J Iron Steel Res Int 15(4):16–20

    Article  Google Scholar 

  4. Sigeru K (1984) On the secondary cooling control technology for the continuous casting-direct rolling processes. Nippon Steel Tech Rep 23:69

    Google Scholar 

  5. Bast J, Bouhouche S (1997) Mathematishe Modellierung einer Strangießanlage Freiberger Forschungshefte Automatisierung in der Montanindudtrie Freiberg Germany. A839: 37

  6. Ji C, Zhu M, Cao X, Luo S (2011) Research and application of soft reduction amount online calculation model for bloom continuous casting process. Proceeding METEC2011. Dusseldorf: 27 June–1 July.

  7. Raclevsky M, Válek L (2011) Metal level behaviour in continuous casting tundishes. Proceeding METEC2011, Dusseldorf: 27 June–1 July

  8. Barlocco C (1983) Projet d’un système d’automatisation du refroidissement secondaire en coulée continue. Révue de Métallurgie CIT 12:947

    Google Scholar 

  9. Harste K (1996) Process control and strand condition monitoring at Dillinger Hüttenwerke. Révue de Métallurgie CIT 4:1241

    Google Scholar 

  10. Lamp T, Köchner H (2011) Optical monitoring of initial solidification in a billet continuous casting mould. Proceeding METEC2011. Dusseldorf: 27 June–1 July

  11. Craig IK, Camisani-Calzolari FR, Pistorius PC (2001) A contemplative stance on the automation of continuous casting in steel processing. Control Eng Pract 9:1013–1020

    Article  Google Scholar 

  12. Marjanovic O, Lennox B, Sandoz D, Smith K, Crofts M (2006) Real-time monitoring of an industrial batch process. Comput Chem Eng 30:1476–1481

    Article  Google Scholar 

  13. Zhang Y, Dudzic MS (2006) Industrial application of multivariate SPC to continuous caster start-up operations for breakout prevention. Control Eng Pract 14:1357–1375

    Article  Google Scholar 

  14. Dukman L, Moon CH, Moon SC, Park HD (2009) Development of healing control technology for reducing breakout in thin slab casters. Control Eng Pract 17:3–13

    Article  Google Scholar 

  15. Manabu K, Nakagawa Y (2008) Data-based process monitoring, process control, and quality improvement: recent development and applications in steel industry. Comput Chem Eng 32:12–24

    Article  Google Scholar 

  16. Xuan TD, Srinivasan R (2008) Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control. Comput Chem Eng 32:230–243

    Article  Google Scholar 

  17. Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33:795–814

    Article  Google Scholar 

  18. Vesanto J (2000) Using SOM in data mining. Licentiate thesis, Helsinki University of Technology

  19. Kohonen T (2001) Self-organizing maps. Springer, Heidelberg

    Book  MATH  Google Scholar 

  20. Chiang LH, Russell EL, Braatz RD (2001) Fault detection and diagnosis in industrial systems, 2nd edn. Springer, London Berlin Heidelberg

    Book  MATH  Google Scholar 

  21. Bouhouche S, Lahreche M, Moussaoui A, Bast J (2007) Quality monitoring using principal component analysis and fuzzy logic. Application in continuous casting process. Am J Appl Sci 4:637–644

    Article  Google Scholar 

  22. Xuan TD, Rajagopalan S (2008) Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control. Comput Chem Eng 32:230–243

    Article  Google Scholar 

  23. Bouhouche S, Laib LY, Bast J (2010) Evaluation-based online support vector machine and fuzzy reasoning. Application to condition monitoring of speeds rolling. Control Eng Pract 18:1060–1068

    Article  Google Scholar 

  24. M. Haag (2005) Autocorrelation of random processes. http://cnx.org/content/m10676/latest/. Accessed Apr 2005

  25. Kourti T, Nomikos P, MacGregor JF (1995) Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway. J Process Control 5:277–278

    Article  Google Scholar 

  26. Ge Z, Song Z (2008) Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Eng Pract 16:1427–1437

    Article  Google Scholar 

  27. Manabu K, Yoshiaki N (2008) Data-based process monitoring, process control, and quality improvement: recent development and applications in steel industry. Comput Chem Eng 32:12–24

    Article  Google Scholar 

  28. Faggian A, Facco P, Doplicher F, Bezzo F, Barolo M (2009) Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals. Chem Eng Res Des 87:325–334

    Article  Google Scholar 

  29. Vapnik VN (1995) The nature of statistical learning theory. Springer, Heidelberg

    Book  MATH  Google Scholar 

  30. Ceperic V, Gielen G, Baric A (2012) Sparse multikernel support vector regression machines trained by active learning. Expert Syst Appl 39:11029–11035

    Article  Google Scholar 

  31. Li MZZ, Li W (2005) Study on least squares support vector machines algorithm and its application. Proceedings of the 17th IEEE International Conference on tools with artificial intelligence: 1082–3409

  32. Desai K, Badhe Y, Tambe SS, Kulkarni BD (2006) Soft sensor development for fed batch bioreactors using support vector regression. Biochem Eng J 27(3):225–239

    Article  Google Scholar 

  33. David LO, Dursun D (2008) Advanced data mining techniques. Springer, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouhouche Salah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dit Leksir Yazid, L., Salah, B., Seghir, B.M. et al. Adaptive support vector machine-based surface quality evaluation and temperature monitoring. Application to billet continuous casting process. Int J Adv Manuf Technol 67, 2063–2073 (2013). https://doi.org/10.1007/s00170-012-4631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4631-0

Keywords

Navigation