Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Cartilage regeneration using a novel autologous growth factors-based matrix for full-thickness defects in sheep

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy

Abstract

Purpose

To investigate the chondrogenic-regenerative properties of a novel autologous-made matrix composed of hyaline cartilage chips combined with a growth factors-based clot for full-thickness defects in sheep.

Methods

A full-thickness, 8-mm diameter cartilage defect was created in the weight-bearing area of the medial femoral condyle in 6 sheep. Treatment consisted of surgical implantation of an autologous-based matrix of hyaline cartilage chips combined with a clot of plasma poor in platelets and intraarticular injection of plasma rich in growth factors. Outcome measures at 1, 3 and 6 months included macroscopic International Cartilage Repair Society (ICRS) score, histological and immunohistochemical analysis for collagen expression, and transmission electron microscopy study.

Results

The 6-month macroscopic evaluation showed nearly normal (11.1 ± 0.7) cartilage repair assessment. The ICRS score was significantly higher at 6 months compared to 3 months (5.5 ± 1.3; p < 0.0001) and 1 (1.1 ± 0.4; p < 0.0001) month. At 6 months, hyaline cartilage tissue filling the defect was observed with adequate integration of the regenerated cartilage at the surrounding healthy cartilage margin. At 6 months, mature chondrons and cartilage matrix contained collagen fibers with masked fibrillary structure, and the expression of collagen in the newly formed cartilage was similar in intensity and distribution pattern compared to the healthy adjacent cartilage.

Conclusions

This novel treatment enhanced chondrogenesis and regenerated hyaline cartilage at 6 months with nearly normal macroscopic ICRS assessment. Histological analysis showed equivalent structure to mature cartilage tissue in the defect and a collagen expression pattern in the newly formed cartilage similar to that found in adjacent healthy articular cartilage. The present technique may have clinical application for chondral injuries in humans because this procedure is cheap (no need for allograft, or expensive instrumentation/biomaterials/techniques), easy and fast-performing through a small arthrotomy, and safe (no rejection possibility because the patients’ own tissue, cells, and plasma are used).

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrams GD, Frank RM, Fortier LA, Cole BJ (2013) Platelet-rich plasma for articular cartilage repair. Sports Med Arthrosc 21:213–219

    Article  PubMed  Google Scholar 

  2. Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ, Lenz ME, Sah RL, Masuda K (2006) Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartil 14:1272–1280

    Article  CAS  PubMed  Google Scholar 

  3. Alsousou J, Ali A, Willett K, Harrison P (2013) The role of platelet-rich plasma in tissue regeneration. Platelets 24:173–182

    Article  CAS  PubMed  Google Scholar 

  4. Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N (2007) Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials 28:5462–5470

    Article  CAS  PubMed  Google Scholar 

  5. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91:4–15

    Article  PubMed  Google Scholar 

  6. Anitua E, Sanchez M, Nurden AT, Zalduendo M, de la Fuente M, Orive G, Azofra J, Andia I (2006) Autologous fibrin matrices: a potential source of biological mediators that modulate tendon cell activities. J Biomed Mater Res A 77:285–293

    Article  CAS  PubMed  Google Scholar 

  7. Bekkers JE, Tsuchida AI, van Rijen MH, Vonk LA, Dhert WJ, Creemers LB, Saris DB (2013) Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells: comparison with microfracture. Am J Sports Med 41:2158–2166

    Article  PubMed  Google Scholar 

  8. Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87:77–95

    Article  PubMed  Google Scholar 

  9. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  PubMed  Google Scholar 

  10. Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28:192–202

    Article  CAS  PubMed  Google Scholar 

  11. Cavallo C, Filardo G, Mariani E, Kon E, Marcacci M, Pereira Ruiz MT, Facchini A, Grigolo B (2014) Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro study. J Bone Jt Surg Am 96:423–429

    Article  Google Scholar 

  12. Corpus KT, Bajaj S, Daley EL, Lee A, Kercher JS, Salata MJ, Verma NN, Cole BJ (2012) Long-term evaluation of autologous chondrocyte implantation: minimum 7-year follow-up. Cartilage 3:342–350

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cugat R, Alentorn-Geli E, Steinbacher G, Alvarez-Diaz P, Cusco X, Seijas R, Barastegui D, Navarro J, Laiz P, Garcia-Balletbo M (2017) Treatment of knee osteochondral lesions using a novel clot of autologous plasma rich in growth factors mixed with healthy hyaline cartilage chips and intra-articular injection of PRGF. Case Rep Orthop 2017:8284548

    PubMed  PubMed Central  Google Scholar 

  14. Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, Buschmann MD, Henderson JE (2005) Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem 280:20509–20515

    Article  CAS  PubMed  Google Scholar 

  15. Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS (2017) Surgical treatments of cartilage defects of the knee: Systematic review of randomised controlled trials. Knee 24:508–517

    Article  PubMed  Google Scholar 

  16. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 27:158–167

    Article  CAS  PubMed  Google Scholar 

  17. Drengk A, Zapf A, Sturmer EK, Sturmer KM, Frosch KH (2009) Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs 189:317–326

    Article  PubMed  Google Scholar 

  18. Eppley BL, Woodell JE, Higgins J (2004) Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg 114:1502–1508

    Article  PubMed  Google Scholar 

  19. Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35

    Article  CAS  PubMed  Google Scholar 

  20. Farr J, Cole BJ, Sherman S, Karas V (2012) Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg 25:23–29

    Article  PubMed  Google Scholar 

  21. Gaissmaier C, Koh JL, Weise K (2008) Growth and differentiation factors for cartilage healing and repair. Injury 39(Suppl 1):S88–S96

    Article  PubMed  Google Scholar 

  22. Gillogly SD, Burnett A (2016) Return to play after articular cartilage repair of the knee. Aspetar Sports Med J 5:298–305

    Google Scholar 

  23. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N (2015) Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage 6:82–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gobbi A, Fishman M (2016) Platelet-rich plasma and bone marrow-derived mesenchymal stem cells in sports medicine. Sports Med Arthrosc 24:69–73

    Article  PubMed  Google Scholar 

  25. Hills RL, Belanger LM, Morris EA (2005) Bone morphogenetic protein 9 is a potent anabolic factor for juvenile bovine cartilage, but not adult cartilage. J Orthop Res 23:611–617

    Article  CAS  PubMed  Google Scholar 

  26. Ito Y, Ochi M, Adachi N, Sugawara K, Yanada S, Ikada Y, Ronakorn P (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthroscopy 21:1155–1163

    Article  PubMed  Google Scholar 

  27. Jin EJ, Park JH, Lee SY, Chun JS, Bang OS, Kang SS (2006) Wnt-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int J Biochem Cell Biol 38:183–195

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi T, Ochi M, Yanada S, Ishikawa M, Adachi N, Deie M, Arihiro K (2008) A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy 24:69–76

    Article  PubMed  Google Scholar 

  29. Lee HR, Park KM, Joung YK, Park KD, Do SH (2012) Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Control Release 159:332–337

    Article  CAS  PubMed  Google Scholar 

  30. Li WG, Xu XX (2005) The expression of N-cadherin, fibronectin during chondrogenic differentiation of MSC induced by TGF-beta(1). Chin J Traumatol 8:349–351

    PubMed  Google Scholar 

  31. Lind M, Larsen A, Clausen C, Osther K, Everland H (2008) Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc 16:690–698

    Article  PubMed  Google Scholar 

  32. Magalon J, Bausset O, Serratrice N, Giraudo L, Aboudou H, Veran J, Magalon G, Dignat-Georges F, Sabatier F (2014) Characterization and comparison of 5 platelet-rich plasma preparations in a single-donor model. Arthroscopy 30:629–638

    Article  PubMed  Google Scholar 

  33. Milano G, Sanna Passino E, Deriu L, Careddu G, Manunta L, Manunta A, Saccomanno MF, Fabbriciani C (2010) The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthr Cartil 18:971–980

    Article  CAS  PubMed  Google Scholar 

  34. Minas T, Von Keudell A, Bryant T, Gomoll AH (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 472:41–51

    Article  PubMed  Google Scholar 

  35. Musumeci G, Castrogiovanni P, Leonardi R, Trovato FM, Szychlinska MA, Di Giunta A, Loreto C, Castorina S (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88

    Article  PubMed  PubMed Central  Google Scholar 

  36. Neumann K, Dehne T, Endres M, Erggelet C, Kaps C, Ringe J, Sittinger M (2008) Chondrogenic differentiation capacity of human mesenchymal progenitor cells derived from subchondral cortico-spongious bone. J Orthop Res 26:1449–1456

    Article  CAS  PubMed  Google Scholar 

  37. O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140

    Google Scholar 

  38. Park SI, Lee HR, Kim S, Ahn MW, Do SH (2012) Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures. Mol Cell Biochem 361:9–17

    Article  CAS  PubMed  Google Scholar 

  39. Qi YY, Chen X, Jiang YZ, Cai HX, Wang LL, Song XH, Zou XH, Ouyang HW (2009) Local delivery of autologous platelet in collagen matrix simulated in situ articular cartilage repair. Cell Transplant 18:1161–1169

    Article  PubMed  Google Scholar 

  40. Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S (2012) Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials 33:751–761

    Article  CAS  PubMed  Google Scholar 

  41. Richter DL, Schenck RC Jr, Wascher DC, Treme G (2016) Knee articular cartilage repair and restoration techniques: a review of the literature. Sports Health 8:153–160

    Article  PubMed  Google Scholar 

  42. Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, Emans P, Podskubka A, Tsuchida A, Kili S, Levine D, Brittberg M, group Ss (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 42:1384–1394

    Article  PubMed  Google Scholar 

  43. Shiraishi K, Kamei N, Takeuchi S, Yanada S, Mera H, Wakitani S, Adachi N, Ochi M (2017) Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair. Stem Cells Int 2017:8740294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K (1989) Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Jt Surg Br 71:74–80

    Article  CAS  Google Scholar 

  45. Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13:595–600

    Article  PubMed  Google Scholar 

  46. Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci USA 102:5062–5067

    Article  CAS  PubMed  Google Scholar 

  47. Zhu Y, Yuan M, Meng HY, Wang AY, Guo QY, Wang Y, Peng J (2013) Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil 21:1627–1637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Alfonso Blanco Rodríguez, Dra. Montserrat García Balletbó, Dra. Mónica Rubio Zaragoza, Dr. Joaquín Sopena Juncosa for their expert assistance during the development of this study. Also, to Jordi Navarro Lorente for his contributions to the improvement of the matrix preparation, and Sue-Sonia Tizol for her service with language translation.

Funding

This study was supported by the García-Cugat Foundation for Biomedical Research. The authors declare no other sources of funding.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design, or acquisition of data, or analysis and interpretation of data: JMD, AFS, DAG, MMGM, JMR, RNC, JPA, JMCP, EAG, PLB, RCB. Drafting the manuscript or revising it critically for important intellectual content: JMD, AFS, DAG, MMGM, JMR, RNC, JPA, JMCP, EAG, PLB, RCB. Final approval of the version to be published: JMD, AFS, DAG, MMGM, JMR, RNC, JPA, JMCP, EAG, PLB, RCB. Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: JMD, AFS, DAG, MMGM, JMR, RNC, JPA, JMCP, EAG, PLB, RCB.

Corresponding author

Correspondence to Juan Manuel Domínguez Pérez.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article. The authors do not have any financial interest or other relationship with any commercial company related to this study.

Ethical approval

Authorization of the Junta de Andalucia bioethics committee number 12/06/2016/109—reference SSA/SIS/MD/jv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez Pérez, J.M., Fernández-Sarmiento, J.A., Aguilar García, D. et al. Cartilage regeneration using a novel autologous growth factors-based matrix for full-thickness defects in sheep. Knee Surg Sports Traumatol Arthrosc 27, 950–961 (2019). https://doi.org/10.1007/s00167-018-5107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5107-z

Keywords

Navigation