Abstract
The existence of either a maximum or a minimum for a uniformly continuous mapping f of a compact interval into \({\mathbb{R}}\) is established constructively under the hypotheses that f′ is sequentially continuous and f has at most one critical point.
Similar content being viewed by others
References
Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Report no. 40, Institut Mittag–Leffler, Royal Swedish Academy of Sciences (2001)
Berger J. and Ishihara H. (2005). Brouwer’s fan theorem and unique existence in constructive analysis. Math. Log. Q. 51: 360–364
Berger J., Bridges D. and Schuster P. (2006). The fan theorem and unique existence of maxima. J. Symb. Logic 71(2): 713–720
Bishop, E., Bridges, D.: Foundations of constructive analysis. Grundlehren der Math. Wiss. 279, Springer, Heidelberg (1985)
Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math. Soc. Lecture Notes 97, Cambridge University Press (1987)
Bridges, D., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext, Springer, Heidelberg (2006)
Ishihara H. (1991). Continuity and nondiscontinuity in constructive analysis. J. Symb. Logic 56(4): 1349–1354
Kohlenbach U. (1993). Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure Appl. Logic 64: 27–94
Kushner, B.A.: Lectures on constructive mathematical analysis. Am. Math. Soc. (1985)
Myhill J. (1975). Constructive set theory. J. Symb. Logic 40(3): 347–382
Richman, F.: Pointwise differentiability. In: Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum Kluwer, Dordrecht, 207–210 (2001)
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction (two volumes). North-Holland, Amsterdam (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bridges, D.S. Constructing local optima on a compact interval. Arch. Math. Logic 46, 149–154 (2007). https://doi.org/10.1007/s00153-006-0032-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-006-0032-0