Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Constructing local optima on a compact interval

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The existence of either a maximum or a minimum for a uniformly continuous mapping f of a compact interval into \({\mathbb{R}}\) is established constructively under the hypotheses that f′ is sequentially continuous and f has at most one critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, P., Rathjen, M.: Notes on Constructive Set Theory. Report no. 40, Institut Mittag–Leffler, Royal Swedish Academy of Sciences (2001)

  2. Berger J. and Ishihara H. (2005). Brouwer’s fan theorem and unique existence in constructive analysis. Math. Log. Q. 51: 360–364

    Article  MathSciNet  Google Scholar 

  3. Berger J., Bridges D. and Schuster P. (2006). The fan theorem and unique existence of maxima. J. Symb. Logic 71(2): 713–720

    MathSciNet  Google Scholar 

  4. Bishop, E., Bridges, D.: Foundations of constructive analysis. Grundlehren der Math. Wiss. 279, Springer, Heidelberg (1985)

  5. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math. Soc. Lecture Notes 97, Cambridge University Press (1987)

  6. Bridges, D., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext, Springer, Heidelberg (2006)

  7. Ishihara H. (1991). Continuity and nondiscontinuity in constructive analysis. J. Symb. Logic 56(4): 1349–1354

    Article  MathSciNet  Google Scholar 

  8. Kohlenbach U. (1993). Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure Appl. Logic 64: 27–94

    MathSciNet  Google Scholar 

  9. Kushner, B.A.: Lectures on constructive mathematical analysis. Am. Math. Soc. (1985)

  10. Myhill J. (1975). Constructive set theory. J. Symb. Logic 40(3): 347–382

    Article  MathSciNet  Google Scholar 

  11. Richman, F.: Pointwise differentiability. In: Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes—Constructive and Nonstandard Views of the Continuum Kluwer, Dordrecht, 207–210 (2001)

  12. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction (two volumes). North-Holland, Amsterdam (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas S. Bridges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridges, D.S. Constructing local optima on a compact interval. Arch. Math. Logic 46, 149–154 (2007). https://doi.org/10.1007/s00153-006-0032-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0032-0

Keywords

Navigation