Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Decomposability of free Łukasiewicz implication algebras

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Łukasiewicz implication algebras are {→,1}-subreducts of Wajsberg algebras (MV-algebras). They are the algebraic counterpart of Super-Łukasiewicz Implicational logics investigated in Komori, Nogoya Math J 72:127–133, 1978. The aim of this paper is to study the direct decomposability of free Łukasiewicz implication algebras. We show that freely generated algebras are directly indecomposable. We also study the direct decomposability in free algebras of all its proper subvarieties and show that infinitely freely generated algebras are indecomposable, while finitely free generated algebras can be only decomposed into a direct product of two factors, one of which is the two-element implication algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott J.C. (1967) Semi-boolean algebras. Mat. Vesnik 4, 177–198

    MATH  MathSciNet  Google Scholar 

  2. Abbott J.C. (1967) Implicational algebras. Bull. Math R. S. Roumaine 11, 3–23

    MathSciNet  Google Scholar 

  3. Berman J., Blok W.J. (2004) Free Lucasiewicz hoop residuation algebras. Studia Logica 77, 153–180

    Article  MATH  MathSciNet  Google Scholar 

  4. Blok W.J., Raftery J.G. (1995) On the quasivariety of BCK-algebras and its subquasivarieties. Algebra Universalis 33, 68–90

    Article  MATH  MathSciNet  Google Scholar 

  5. Burris S., Sankappanavar H.P. (1981) A course in universal algebra. In: Graduate Texts in Mathematics, vol. 78. Springer, Berlin Heidelberg New York

  6. Chang C.C. (1958) Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490

    Article  MATH  Google Scholar 

  7. Cohn P.M. (1981) Universal Algebra, Revised edn. Reidel, Dordrecht

    Google Scholar 

  8. Díaz Varela J.P., Torrens A. (2003) Decomposability of free Tarski algebras. Algebra Universalis 50, 1–5

    Article  MATH  MathSciNet  Google Scholar 

  9. Font J.M., Rodriguez A.J., Torrens A. (1984) Wajsberg algebras. Stochastica 8, 5–31

    MATH  MathSciNet  Google Scholar 

  10. Komori, Y.: The separation theorem on of the \(\aleph_0\)-valued propositional logic. Rep. Fac. Sci. Shizouka Univ. 12, 1–5. (1978) 72, 127–133 (1978)

  11. Komori Y. (1978) Super-Ł ucasiewicz implicational logics. Nogoya Math. J. 72, 127–133

    MATH  MathSciNet  Google Scholar 

  12. Mundici D. (1986) MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japonica 31, 889–894

    MATH  MathSciNet  Google Scholar 

  13. Torrens A. (1988) On the role of the polynomial (Xy) → y in some implicative algebras. In: Zeitsch. F. Math. Logik Grundl. Math. 34, 117–122

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Patricio Díaz Varela.

Additional information

This paper was prepared while the first author was visiting the University of Barcelona, partially supported by Universidad Nacional del Sur, CONICET and Fundación Carolina. The second author was partially supported by grants MTM2004-03101 and TIN2004-07933-C03-02 of M.E.C. of España.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz Varela, J.P., Torrens Torrell, A. Decomposability of free Łukasiewicz implication algebras. Arch. Math. Logic 45, 1011–1020 (2006). https://doi.org/10.1007/s00153-006-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0023-1

Keywords

Mathematics Subject Classification (2000)

Navigation