Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Complexity of admissible rules

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We investigate the computational complexity of deciding whether a given inference rule is admissible for some modal and superintuitionistic logics. We state a broad condition under which the admissibility problem is coNEXP-hard. We also show that admissibility in several well-known systems (including GL, S4, and IPC) is in coNE, thus obtaining a sharp complexity estimate for admissibility in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackburn P., Venema Y. and Rijke M. (2001). Modal logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge

    Google Scholar 

  2. Bull R.A. (1966). That all normal extensions of S4.3 have the finite model property. Zeitschrift mathematische Logik Grundlagen Mathematik 12: 341–344

    MathSciNet  Google Scholar 

  3. Chagrov, A.V.: On the complexity of propositional logics. In: Complexity problems in Mathematical Logic, pp. 80–90. Kalinin State University (1985) (in Russian)

  4. Chagrov A.V. (1992). A decidable modal logic with the undecidable admissibility problem for inference rules. Algebra Logic 31: 53–55

    Article  MathSciNet  Google Scholar 

  5. Chagrov A.V. and Zakharyaschev M. (1997). Modal Logic. Oxford Logic Guides, vol. 35. Oxford University Press, Oxford

    Google Scholar 

  6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)

  7. Friedman H.M. (1975). One hundred and two problems in mathematical logic. J. Symbolic Logic 40(2): 113–129

    Article  MathSciNet  Google Scholar 

  8. Ghilardi S. (1999). Unification in intuitionistic logic. J. Symbolic Logic 64(2): 859–880

    Article  MathSciNet  Google Scholar 

  9. Ghilardi S. (2000). Best solving modal equations. Ann. Pure Appl. Logic 102(3): 183–198

    Article  MathSciNet  Google Scholar 

  10. Ghilardi S. (2002). A resolution/tableaux algorithm for projective approximations in IPC. Logic J. IGPL 10(3): 229–243

    Article  MathSciNet  Google Scholar 

  11. Iemhoff R. (2001). On the admissible rules of intuitionistic propositional logic. J. Symbolic Logic 66(1): 281–294

    Article  MathSciNet  Google Scholar 

  12. Iemhoff R. (2005). Intermediate logics and Visser’s rules. Notre Dame J. Formal Logic 46(1): 65–81

    Article  MathSciNet  Google Scholar 

  13. Iemhoff R. (2006). On the rules of intermediate logics. Arch. Math. Logic 45(5): 581–599

    Article  MathSciNet  Google Scholar 

  14. Jeřábek E. (2005). Admissible rules of modal logics. J. Logic Comput. 15(4): 411–431

    Article  MathSciNet  Google Scholar 

  15. Kuznetsov, A.V.: On superintuitionistic logics. In: Proceedings of the International Congress of Mathematicians (Vancouver), pp. 243–249 (1975)

  16. Ladner R.E. (1977). The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3): 467–480

    Article  MathSciNet  Google Scholar 

  17. Papadimitriou C.H. (1994). Computational complexity. Addison-Wesley, Reading

    MATH  Google Scholar 

  18. Rybakov V.V. (1997). Admissibility of logical inference rules. Studies in Logic and the Foundations of Mathematics, vol 136. Elsevier, Amsterdam

    Google Scholar 

  19. Spaan, E.: Complexity of modal logics. Ph.D. thesis, University of Amsterdam (1993)

  20. Statman R. (1979). Intuitionistic propositional logic is polynomial-space complete. Theor. Comput. Sci. 9(1): 67–72

    Article  MathSciNet  Google Scholar 

  21. Zakharyaschev M. (1996). Canonical formulas for K4. Part II: Cofinal subframe logics. J. Symbolic Logic 61(2): 421–449

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Jeřábek.

Additional information

The research was done while the author was visiting the Department of Philosophy of the Utrecht University. Supported by grant IAA1019401 of GA AV ČR

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeřábek, E. Complexity of admissible rules. Arch. Math. Logic 46, 73–92 (2007). https://doi.org/10.1007/s00153-006-0028-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0028-9

Keywords

Mathematics Subject Classification (2000)

Navigation