Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A note on the schemes of replacement and collection

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We derive the schemes of from certain weak forms of the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hájek, P., Vopěnka, P.: Über die Gültigkeit des Fundierungsaxioms in speziellen Systemen der Mengentheorie. Zeitschr. f. math Logik und Grundlagen d. Math. 9, 235–241 (1963)

    MATH  Google Scholar 

  2. Hauschild, K.: Bemerkungen, das Fundierungsaxiom betreffend. Zeitschr. f. math. Logik und Grundlagen d. Math. 12, 51–56 (1966)

    MATH  MathSciNet  Google Scholar 

  3. Mathias, A. R. D.: The Strength of Mac Lane Set Theory. Annals of Pure and Applied Logic, 110, 107–234 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zarach, A.: Springer Lecture Notes in Logic 6, 307–322 (1996)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathias, A. A note on the schemes of replacement and collection. Arch. Math. Logic 46, 43–50 (2007). https://doi.org/10.1007/s00153-005-0289-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-005-0289-8

Keywords

Navigation