Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Medtransnet: advanced gating transformer network for medical image classification

  • Research
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Accurate medical image classification poses a significant challenge in designing expert computer-aided diagnosis systems. While deep learning approaches have shown remarkable advancements over traditional techniques, addressing inter-class similarity and intra-class dissimilarity across medical imaging modalities remains challenging. This work introduces the advanced gating transformer network (MedTransNet), a deep learning model tailored for precise medical image classification. MedTransNet utilizes channel and multi-gate attention mechanisms, coupled with residual interconnections, to learn category-specific attention representations from diverse medical imaging modalities. Additionally, the use of gradient centralization during training helps in preventing overfitting and improving generalization, which is especially important in medical imaging applications where the availability of labeled data is often limited. Evaluation on benchmark datasets, including APTOS-2019, Figshare, and SARS-CoV-2, demonstrates effectiveness of the proposed MedTransNet across tasks such as diabetic retinopathy severity grading, multi-class brain tumor classification, and COVID-19 detection. Experimental results showcase MedTransNet achieving 85.68% accuracy for retinopathy grading, 98.37% (\(\pm \,0.44\)) for tumor classification, and 99.60% for COVID-19 detection, surpassing recent deep learning models. MedTransNet holds promise for significantly improving medical image classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., Mengko, T.R.: Brain tumor classification using convolutional neural network, In: World Congress on Medical Physics and Biomedical Engineering 2018, Springer. pp. 183–189 (2019)

  2. Afshar, P., Mohammadi, A., Plataniotis, K.N.: Brain tumor type classification via capsule networks, In: 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE. pp. 3129–3133 (2018)

  3. Ahmed, S., Yap, M.H., Tan, M., Hasan, M.K.: Reconet: Multi-level preprocessing of chest x-rays for covid-19 detection using convolutional neural networks. medRxiv (2020)

  4. Al-Antary, M.T., Arafa, Y.: Multi-scale attention network for diabetic retinopathy classification. IEEE Access 9, 54190–54200 (2021)

    Article  Google Scholar 

  5. Alyoubi, W.L., Abulkhair, M.F., Shalash, W.M.: Diabetic retinopathy fundus image classification and lesions localization system using deep learning. Sensors 21, 3704 (2021)

    Article  Google Scholar 

  6. Alyoubi, W.L., Shalash, W.M., Abulkhair, M.F.: Diabetic retinopathy detection through deep learning techniques: a review. Inf. Med. Unlocked 20, 100377 (2020)

    Article  Google Scholar 

  7. Amin, J., Sharif, M., Haldorai, A., Yasmin, M., Nayak, R.S.: Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell. Syst., pp. 1–23 (2021)

  8. Amin, J., Sharif, M., Yasmin, M.: A review on recent developments for detection of diabetic retinopathy. Sci. 2016 (2016)

  9. Angelov, P., Almeida Soares, E.: SARS-COV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-COV-2 identification. medRxiv (2020)

  10. Arakeri, M.P., Reddy, G.R.M.: Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images. SIViP 9, 409–425 (2015)

    Article  Google Scholar 

  11. Ayadi, W., Charfi, I., Elhamzi, W., Atri, M.: Brain tumor classification based on hybrid approach. The Visual Comput. , pp. 1–11 (2020)

  12. Basu, A., Sheikh, K.H., Cuevas, E., Sarkar, R.: COVID-19 detection from CT scans using a two-stage framework. Expert Syst. Appl. 193, 116377 (2022)

    Article  Google Scholar 

  13. Bodapati, J.D.: Stacked convolutional auto-encoder representations with spatial attention for efficient diabetic retinopathy diagnosis. Multimed. Tools Appl., pp. 1–24 (2022)

  14. Bodapati, J.D., Naralasetti, V., Shareef, S.N., Hakak, S., Bilal, M., Maddikunta, P.K.R., Jo, O.: Blended multi-modal deep ConvNet features for diabetic retinopathy severity prediction. Electronics 9, 914 (2020)

    Article  Google Scholar 

  15. Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J. Ambient. Intell. Humaniz. Comput. 12, 9825–9839 (2021)

    Article  Google Scholar 

  16. Bodapati, J.D., Shaik, N.S., Naralasetti, V.: Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. SIViP 15, 923–930 (2021)

    Article  Google Scholar 

  17. Bodapati, J.D., Shaik, N.S., Naralasetti, V., Mundukur, N.B.: Joint training of two-channel deep neural network for brain tumor classification. Signal, Image Video Processing , pp. 1–8 (2020)

  18. Bodapati, J.D., Shareef, S.N., Naralasetti, V., Mundukur, N.B.: Msenet: Multi-modal squeeze-and-excitation network for brain tumor severity prediction. Int. J. Pattern Recognit. Artific. Intell., 2157005 (2021c)

  19. Devi, Bodapati Jyostna, V.A., Naralasetti, V.: Brain tumor detection using deep features in the latent space. Ingénierie des Systèmes d’Information 25, 259–265 (2020)

  20. Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J.F., Margaritis, I.: Dietary copper and human health: current evidence and unresolved issues. J. Trace Elem. Med Biol. 35, 107–115 (2016)

    Article  Google Scholar 

  21. Cheng, J.: Brain Tumor Dataset. (2017) URL https://figshare.com/articles/brain_tumor_dataset/1512427. https://doi.org/10.6084/m9.figshare.1512427.v5

  22. Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., Feng, Q.: Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10, e0140381 (2015)

    Article  Google Scholar 

  23. Dangis, A., Gieraerts, C., Bruecker, Y.D., Janssen, L., Valgaeren, H., Obbels, D., Gillis, M., Ranst, M.V., Frans, J., Demeyere, A., et al.: Accuracy and reproducibility of low-dose submillisievert chest CT for the diagnosis of COVID-19. Radiol. Cardiothorac. Imaging 2, e200196 (2020)

  24. Deepak, S., Ameer, P.: Automated categorization of brain tumor from MRI using CNN features and SVM. J. Ambient Intell. Humanized Comput. (2020)

  25. Deepika, K., Bodapati, J.D., Srihitha, R.K.: An efficient automatic brain tumor classification using lbp features and svm-based classifier, In: Proceedings of International Conference on Computational Intelligence and Data Engineering, Springer. pp. 163–170 (2019)

  26. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database, In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE. pp. 248–255 (2009)

  27. Dinnes, J., Deeks, J.J., Berhane, S., Taylor, M., Adriano, A., Davenport, C., Dittrich, S., Emperador, D., Takwoingi, Y., Cunningham, J., et al.: Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-COV-2 infection. Cochrane Database of Systematic Reviews (2021)

  28. Dondeti, V., Bodapati, J.D., Shareef, S.N., Veeranjaneyulu, N.: Deep convolution features in non-linear embedding space for fundus image classification. Rev. d’Intelligence Artif. 34, 307–313 (2020)

    Google Scholar 

  29. Eisenbarth, G.S.: Type I diabetes mellitus. N. Engl. J. Med. 314, 1360–1368 (1986)

    Article  Google Scholar 

  30. El-Dahshan, E.S.A., Mohsen, H.M., Revett, K., Salem, A.B.M.: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41, 5526–5545 (2014)

    Article  Google Scholar 

  31. Gangwar, A.K., Ravi, V.: Diabetic retinopathy detection using transfer learning and deep learning, In: Evolution in Computational Intelligence. Springer, pp. 679–689 (2021)

  32. Gilanie, G., Bajwa, U.I., Waraich, M.M., Asghar, M., Kousar, R., Kashif, A., Aslam, R.S., Qasim, M.M., Rafique, H.: Coronavirus (COVID-19) detection from chest radiology images using convolutional neural networks. Biomed. Signal Process. Control 66, 102490 (2021)

    Article  Google Scholar 

  33. Hemanth, D.J., Deperlioglu, O., Kose, U.: An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput. Appl. 32, 707–721 (2020)

    Article  Google Scholar 

  34. Ibrahim, M.R., Youssef, S.M., Fathalla, K.M.: Abnormality detection and intelligent severity assessment of human chest computed tomography scans using deep learning: a case study on sars-cov-2 assessment. J. Ambient Intell. Humanized Comput. , pp. 1–24 (2021)

  35. International diabetes federation, 2019. International diabetes federation diabetes atlas. https://www.diabetesatlas.org/en/. Accessed: 12-06-2022

  36. Ishtiaq, U., Abdul Kareem, S., Abdullah, E.R.M.F., Mujtaba, G., Jahangir, R., Ghafoor, H.Y.: Diabetic retinopathy detection through artificial intelligent techniques: a review and open issues. Multimed. Tools Appl. 79, 15209–15252 (2020)

    Article  Google Scholar 

  37. Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., Kaur, M.: Classification of the COVID-19 infected patients using densenet201 based deep transfer learning. J. Biomolecular Struct. Dyn., pp. 1–8 (2020)

  38. Janghorbani, M., Jones, R.B., Allison, S.P.: Incidence of and risk factors for proliferative retinopathy and its association with blindness among diabetes clinic attenders. Ophthalmic Epidemiol. 7, 225–241 (2000)

    Article  Google Scholar 

  39. Kaggle, . Aptos 2019 blindness detection challenge. https://www.kaggle.com/c/aptos2019-blindnes-detection. Accessed: 30 Dec 2019

  40. Kassani, S.H., Kassani, P.H., Khazaeinezhad, R., Wesolowski, M.J., Schneider, K.A., Deters, R.: Diabetic retinopathy classification using a modified xception architecture, In: 2019 IEEE international symposium on signal processing and information technology (ISSPIT), IEEE. pp. 1–6 (2019)

  41. Kobat, S.G., Baygin, N., Yusufoglu, E., Baygin, M., Barua, P.D., Dogan, S., Yaman, O., Celiker, U., Yildirim, H., Tan, R.S., et al.: Automated diabetic retinopathy detection using horizontal and vertical patch division-based pre-trained densenet with digital fundus images. Diagnostics 12, 1975 (2022)

    Article  Google Scholar 

  42. Li, X., Hu, X., Yu, L., Zhu, L., Fu, C.W., Heng, P.A.: Canet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans. Med. Imaging 39, 1483–1493 (2019)

    Article  Google Scholar 

  43. Mohammedhasan, M., Uğuz, H.: A new early stage diabetic retinopathy diagnosis model using deep convolutional neural networks and principal component analysis. Traitement du Signal 37, 711–722 (2020)

    Article  Google Scholar 

  44. Muhammad, K., Khan, S., Del Ser, J., De Albuquerque, V.H.C.: Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey. IEEE Trans. Neural Netw. Learn. Syst. 32, 507–522 (2020)

    Article  Google Scholar 

  45. National Brain Tumor Society (2016). National brain tumor society. https://www.https://braintumor.org//. Accessed: 12-06-2022

  46. Nielsen, K.B., Lautrup, M.L., Andersen, J.K., Savarimuthu, T.R., Grauslund, J.: Deep learning-based algorithms in screening of diabetic retinopathy: a systematic review of diagnostic performance. Ophthalmol. Retina 3, 294–304 (2019)

    Article  Google Scholar 

  47. Nigam, B., Nigam, A., Jain, R., Dodia, S., Arora, N., Annappa, B.: Covid-19: automatic detection from x-ray images by utilizing deep learning methods. Expert Syst. Appl. 176, 114883 (2021)

    Article  Google Scholar 

  48. Özkaya, U., Öztürk, Ş., Budak, S., Melgani, F., Polat, K.: Classification of COVID-19 in Chest CT images using convolutional support vector machines. (2020) arXiv preprint arXiv:2011.05746

  49. Panwar, H., Gupta, P., Siddiqui, M.K., Morales-Menendez, R., Bhardwaj, P., Singh, V.: A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest x-ray and CT-Scan images. Chaos Solitons Fractals 140, 110190 (2020)

    Article  MathSciNet  Google Scholar 

  50. Paul, J.S., Plassard, A.J., Landman, B.A., Fabbri, D.: Deep learning for brain tumor classification, In: Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, International Society for Optics and Photonics. p. 1013710 (2017)

  51. Phan, L.T., Nguyen, T.V., Luong, Q.C., Nguyen, T.V., Nguyen, H.T., Le, H.Q., Nguyen, T.T., Cao, T.M., Pham, Q.D.: Importation and human-to-human transmission of a novel coronavirus in Vietnam. N. Engl. J. Med. 382, 872–874 (2020)

    Article  Google Scholar 

  52. Polsinelli, M., Cinque, L., Placidi, G.: A light CNN for detecting COVID-19 from CT scans of the chest. Pattern Recogn. Lett. 140, 95–100 (2020)

    Article  Google Scholar 

  53. Qureshi, I., Ma, J., Abbas, Q.: Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11, 749 (2019)

    Article  Google Scholar 

  54. Rahim, S.S., Palade, V., Holzinger, A.: Image processing and machine learning techniques for diabetic retinopathy detection: a review. Artific. Intell. Mach. Learn. Digital Pathol. pp. 136–154 (2020)

  55. Ramasamy, L.K., Padinjappurathu, S.G., Kadry, S., Damaševičius, R.: Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier. PeerJ. Comput. Sci. 7 (2021)

  56. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: overview, challenges and the future, In: Classification in BioApps. Springer, pp. 323–350 (2018)

  57. Rehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M.: A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits Syst. Signal Process. 39, 757–775 (2020)

    Article  Google Scholar 

  58. Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., et al.: Transmission of 2019-nCOV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382, 970–971 (2020)

    Article  Google Scholar 

  59. Saba, T., Mohamed, A.S., El-Affendi, M., Amin, J., Sharif, M.: Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 59, 221–230 (2020)

    Article  Google Scholar 

  60. Saha, R., Chowdhury, A.R., Banerjee, S.: Diabetic retinopathy related lesions detection and classification using machine learning technology, In: International Conference on Artificial Intelligence and Soft Computing, Springer. pp. 734–745 (2016)

  61. Sen, S., Saha, S., Chatterjee, S., Mirjalili, S., Sarkar, R.: A bi-stage feature selection approach for COVID-19 prediction using chest CT images. Appl. Intell. 51, 8985–9000 (2021)

    Article  Google Scholar 

  62. Shaik, N.S., Cherukuri, T.K.: Lesion-aware attention with neural support vector machine for retinopathy diagnosis. Mach. Vis. Appl. 32, 1–13 (2021)

    Article  Google Scholar 

  63. Shaik, N.S., Cherukuri, T.K.: Hinge attention network: a joint model for diabetic retinopathy severity grading. Appl. Intell. 52, 1–17 (2022)

    Article  Google Scholar 

  64. Shaik, N.S., Cherukuri, T.K.: Multi-level attention network: application to brain tumor classification. SIViP 16, 817–824 (2022)

    Article  Google Scholar 

  65. Shaik, N.S., Cherukuri, T.K.: Transfer learning based novel ensemble classifier for COVID-19 detection from chest CT-scans. Comput. Biol. Med. 141, 105127 (2022)

    Article  Google Scholar 

  66. Shaik, N.S., Cherukuri, T.K.: Visual attention based composite dense neural network for facial expression recognition. J. Ambient Intell. Humaniz. Comput., pp. 1–14 (2022d)

  67. SHI, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.k., WOO, W.c.: Convolutional lstm network: a machine learning approach for precipitation nowcasting, In: Advances in Neural Information Processing Systems, Curran Associates, Inc.. pp. 802–810 (2015)

  68. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. (2014) arXiv preprint arXiv:1409.1556

  69. Swati, Z.N.K., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., Lu, J.: Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging Graph. 75, 34–46 (2019)

    Article  Google Scholar 

  70. Wang, Z., Liu, Q., Dou, Q.: Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE J. Biomed. Health Inform. 24, 2806–2813 (2020)

    Article  Google Scholar 

  71. Wisaeng, K., Sa-Ngiamvibool, W.: Exudates detection using morphology mean shift algorithm in retinal images. IEEE Access 7, 11946–11958 (2019)

    Article  Google Scholar 

  72. Wu, J., Xin, J., Hong, L., You, J., Zheng, N.: New hierarchical approach for microaneurysms detection with matched filter and machine learning, In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE. pp. 4322–4325 (2015)

  73. Yong, H., Huang, J., Hua, X., Zhang, L.: Gradient centralization: a new optimization technique for deep neural networks, In: European Conference on Computer Vision, Springer. pp. 635–652 (2020)

  74. Zhang, B., Wu, X., You, J., Li, Q., Karray, F.: Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recognit. 43, 2237–2248 (2010)

    Article  Google Scholar 

  75. Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

  76. Zheng, Y., He, M., Congdon, N.: The worldwide epidemic of diabetic retinopathy. Indian J. Ophthalmol. 60, 428 (2012)

    Article  Google Scholar 

  77. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al.: A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med. (2020)

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors of this work, NSS, TKC, VN, and JDB, made the following contributions to the project: NSS: Played a key role in conceptualizing the project and designing the methodology. He conducted data collection and analysis, and contributed to writing the original draft of the manuscript. TKC: Conducted an extensive literature review and performed background research. He was responsible for interpreting and visualizing the data, as well as reviewing and editing the manuscript. VN: contributed to the experimental design and implementation. He conducted statistical analysis of the data and actively participated in revising the manuscript. JDB: Played a significant role in software development and coding. She validated and tested the experimental results and provided valuable input during the preparation of the manuscript. All authors contributed equally to the research project, reviewing and approving the final version of the manuscript.

Corresponding author

Correspondence to Jyostna Devi Bodapati.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, N.S., Cherukuri, T.K., Veeranjaneulu, N. et al. Medtransnet: advanced gating transformer network for medical image classification. Machine Vision and Applications 35, 73 (2024). https://doi.org/10.1007/s00138-024-01542-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-024-01542-2

Keywords

Navigation