Abstract
Efficiently representing dynamic textures (DTs) is one of the significant challenges for video understanding in real implementations of computer vision applications. In this work, an efficient approach for DT description is introduced by addressing the following prominent concepts. Firstly, high-order 2D/3D Gaussian-gradient filtering kernels are used for filtering a given video to obtain its Gaussian-gradient-filtered images/volumes. Secondly, taking advantage of the polarizing property of these responses, we propose a competent model of decomposition to decompose them into corresponding robust collections of separately polarized outcomes, which are complementary to DT representation. Finally, a simple variant of local binary patterns (LBPs) is applied to extract local polarized Gaussian-gradient features from the complemented collections for constructing discriminative local-based descriptors. Experimental results for DT recognition on benchmark datasets have remarkably validated the efficacy of our proposal.
Similar content being viewed by others
Data availability
The datasets used in this paper are publicly available.
Notes
CLBP [63] operator is utilized in this work for the purpose of unity in implementing and evaluating the efficiency of the polarized features for DT description. Definitely, it could address other robust local-based operators for further enhancement in practice, e.g., LDP-based [60, 79], CLBC [68], LRP [56], LVP-based [37, 80], MRELBP [81], etc.
References
Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. IJCV 51(2), 91–109 (2003)
Nguyen, X.S., Nguyen, T.P., Charpillet, F., Vu, N.S.: Local derivative pattern for action recognition in depth images. Multimedia Tools Appl. 77(7), 8531–8549 (2018)
Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. PAMI 29(6), 915–928 (2007)
Kellokumpu, V., Zhao, G., Pietikäinen, M.: Recognition of human actions using texture descriptors. Mach. Vis. Appl. 22(5), 767–780 (2011)
Monfort, M., Pan, B., Ramakrishnan, K., Andonian, A., McNamara, B.A., Lascelles, A., et al.: Multi-moments in time: learning and interpreting models for multi-action video understanding. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9434–9445 (2022)
Nguyen, T.P., Manzanera, A., Garrigues, M., Vu, N.S.: Spatial motion patterns: action models from semi-dense trajectories. IJPRAI 28(7), 1460011 (2014)
Péteri, R.: Tracking dynamic textures using a particle filter driven by intrinsic motion information. Mach. Vis. Appl. 22(5), 781–789 (2011)
Zhang, C., Wang, Q., Li, X.: V-LPDR: towards a unified framework for license plate detection, tracking, and recognition in real-world traffic videos. Neurocomputing 449, 189–206 (2021)
Kim, W., Han, J.: Directional coherence-based spatiotemporal descriptor for object detection in static and dynamic scenes. Mach. Vis. Appl. 28(1–2), 49–59 (2017)
Wu, X., Lu, X., Leung, H.: Video smoke separation and detection via sparse representation. Neurocomputing 360, 61–74 (2019)
Lin, Y., Yu, Q., Medioni, G.G.: Efficient detection and tracking of moving objects in geo-coordinates. Mach. Vis. Appl. 22(3), 505–520 (2011)
Zhang, C., Lam, K., Wang, Q.: CoF-Net: a progressive coarse-to-fine framework for object detection in remote-sensing imagery. IEEE Trans. Geosci. Remote Sens. 61, 1–17 (2023)
Hoang, V., Jo, K.: Joint components based pedestrian detection in crowded scenes using extended feature descriptors. Neurocomputing 188, 139–150 (2016)
Favaretto, R.M., Knob, P., Musse, S.R., Vilanova, F., Costa, A.B.: Detecting personality and emotion traits in crowds from video sequences. Mach. Vis. Appl. 30(5), 999–1012 (2019)
Cancela, B., Ortega, M., Penedo, M.G.: Multiple human tracking system for unpredictable trajectories. Mach. Vis. Appl. 25(2), 511–527 (2014)
Chan, A.B., Mahadevan, V., Vasconcelos, N.: Generalized Stauffer-Grimson background subtraction for dynamic scenes. Mach. Vis. Appl. 22(5), 751–766 (2011)
Chan, K.L.: Detection of foreground in dynamic scene via two-step background subtraction. Mach. Vis. Appl. 26(6), 723–740 (2015)
Chetverikov, D., Fazekas, S., Haindl, M.: Dynamic texture as foreground and background. Mach. Vis. Appl. 22(5), 741–750 (2011)
Narayana, M., Hanson, A.R., Learned-Miller, E.G.: Background subtraction: separating the modeling and the inference. Mach. Vis. Appl. 25(5), 1163–1174 (2014)
Nguyen, T.T., Nguyen, T.P.: A comprehensive taxonomy of dynamic texture representation. ACM Comput. Surv. 55(2), 23:1-23:39 (2023)
Saisan, P., Doretto, G., Wu, Y.N., Soatto, S.: Dynamic Texture Recognition. In: CVPR; pp. 58–63 (2001)
Chan, A.B., Vasconcelos, N.: Classifying video with kernel dynamic textures. In: CVPR; pp. 1–6 (2007)
Mumtaz, A., Coviello, E., Lanckriet, G.R.G., Chan, A.B.: Clustering dynamic textures with the hierarchical EM algorithm for modeling video. IEEE Trans. PAMI 35(7), 1606–1621 (2013)
Ravichandran, A., Chaudhry, R., Vidal, R.: View-invariant dynamic texture recognition using a bag of dynamical systems. In: CVPR; pp. 1651–1657 (2009)
Wang, L., Liu, H., Sun, F.: Dynamic texture video classification using extreme learning machine. Neurocomputing 174, 278–285 (2016)
Wang, Y., Hu, S.: Chaotic features for dynamic textures recognition. Soft Comput. 20(5), 1977–1989 (2016)
Wang, Y., Hu, S.: Exploiting high level feature for dynamic textures recognition. Neurocomputing 154, 217–224 (2015)
Mumtaz, A., Coviello, E., Lanckriet, G.R.G., Chan, A.B.: A scalable and accurate descriptor for dynamic textures using bag of system trees. IEEE Trans. PAMI 37(4), 697–712 (2015)
Qiao, Y., Weng, L.: Hidden Markov model based dynamic texture classification. IEEE Signal Process. Lett. 22(4), 509–512 (2015)
Qiao, Y., Xing, Z.: Dynamic texture classification using multivariate hidden markov model. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(A(1)), 302–305 (2018)
Peh, C.H., Cheong, L.F.: Synergizing spatial and temporal texture. IEEE Trans. IP 11(10), 1179–1191 (2002)
Péteri, R., Chetverikov, D.: Qualitative Characterization of Dynamic Textures for Video Retrieval. In: Wojciechowski KW, Smolka B, Palus H, Kozera R, Skarbek W, Noakes L (eds). ICCVG. vol. 32 of Computational Imaging and Vision, pp. 33–38 (2004)
Péteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture regularity. In: Marques JS, de la Blanca NP, Pina P (eds). IbPRIA. vol. 3523 of LNCS, pp. 223–230 (2005)
Lu, Z., Xie, W., Pei, J., Huang, J.: Dynamic Texture Recognition by Spatio-Temporal Multiresolution Histograms. In: WACV/MOTION, pp. 241–246 (2005)
Fazekas, S., Chetverikov, D.: Analysis and performance evaluation of optical flow features for dynamic texture recognition. Signal Proc. Image Commun. 22(7–8), 680–691 (2007)
Nguyen, T.T., Nguyen, T.P., Bouchara, F., Nguyen, X.S.: Directional beams of dense trajectories for dynamic texture recognition. In: Blanc-Talon J, Helbert D, Philips W, Popescu D, Scheunders P, editors. ACIVS, pp. 74–86 (2018)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Directional dense-trajectory-based patterns for dynamic texture recognition. IET Comput. Vis. 14(4), 162–176 (2020)
Rivera, A.R., Chae, O.: Spatiotemporal directional number transitional graph for dynamic texture recognition. IEEE Trans. PAMI 37(10), 2146–2152 (2015)
Xu, Y., Quan, Y., Ling, H., Ji, H.: Dynamic texture classification using dynamic fractal analysis. In: ICCV, pp. 1219–1226 (2011)
Xu, Y., Huang, S.B., Ji, H., Fermüller, C.: Scale-space texture description on SIFT-like textons. CVIU 116(9), 999–1013 (2012)
Ji, H., Yang, X., Ling, H., Xu, Y.: Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Trans. IP 22(1), 286–299 (2013)
Quan, Y., Sun, Y., Xu, Y.: Spatiotemporal lacunarity spectrum for dynamic texture classification. CVIU 165, 85–96 (2017)
Baktashmotlagh, M., Harandi, M.T., Lovell, B.C., Salzmann, M.: Discriminative non-linear stationary subspace analysis for video classification. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2353–2366 (2014)
Péteri, R., Fazekas, S., Huiskes, M.J.: DynTex: a comprehensive database of dynamic textures. Pattern Recognit. Lett. 31(12), 1627–1632 (2010)
Ghanem, B., Ahuja, N.: Maximum margin distance learning for dynamic texture recognition. In: Daniilidis K, Maragos P, Paragios N (eds). ECCV. vol. 6312 of LNCS, pp. 223–236 (2010)
Andrearczyk, V., Whelan, P.F.: Convolutional neural network on three orthogonal planes for dynamic texture classification. Pattern Recognit. 76, 36–49 (2018)
Arashloo, S.R., Amirani, M.C., Noroozi, A.: Dynamic texture representation using a deep multi-scale convolutional network. JVCIR 43, 89–97 (2017)
Qi, X., Li, C.G., Zhao, G., Hong, X., Pietikainen, M.: Dynamic texture and scene classification by transferring deep image features. Neurocomputing 171, 1230–1241 (2016)
Hong, S., Ryu, J., Im, W., Yang, H.S.: D3: recognizing dynamic scenes with deep dual descriptor based on key frames and key segments. Neurocomputing 273, 611–621 (2018)
Quan, Y., Huang, Y., Ji, H.: Dynamic texture recognition via orthogonal tensor dictionary learning. In: ICCV, pp. 73–81 (2015)
Quan, Y., Bao, C., Ji, H.: Equiangular kernel dictionary learning with applications to dynamic texture analysis. In: CVPR; pp. 308–316 (2016)
Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)
Hadji, I., Wildes, R.P.: A new large scale dynamic texture dataset with application to ConvNet understanding. In: ECCV, pp. 334–351 (2018)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. PAMI 24(7), 971–987 (2002)
Ren, J., Jiang, X., Yuan, J.: Dynamic texture recognition using enhanced LBP features. In: ICASSP, pp. 2400–2404 (2013)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Rubik Gaussian-based patterns for dynamic texture classification. Pattern Recognit. Lett. 135, 180–187 (2020)
Zhao, G., Ahonen, T., Matas, J., Pietikäinen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. IP 21(4), 1465–1477 (2012)
Tiwari, D., Tyagi, V.: Dynamic texture recognition based on completed volume local binary pattern. MSSP 27(2), 563–575 (2016)
Tiwari, D., Tyagi, V.: A novel scheme based on local binary pattern for dynamic texture recognition. CVIU 150, 58–65 (2016)
Nguyen, T.T., Nguyen, T.P., Bouchara, F., Nguyen, X.S.: Momental directional patterns for dynamic texture recognition. CVIU 194, 102882 (2020)
Arashloo, S.R., Kittler, J.: Dynamic texture recognition using multiscale binarized statistical image features. IEEE Trans. Multimedia 16(8), 2099–2109 (2014)
Zhao, X., Lin, Y., Liu, L., Heikkilä, J., Zheng, W.: Dynamic texture classification using unsupervised 3D filter learning and local binary encoding. IEEE Trans. Multimedia 21(7), 1694–1708 (2019)
Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. IP 19(6), 1657–1663 (2010)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes. J. Electron. Imaging 27(05), 053044 (2018)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Prominent local representation for dynamic textures based on high-order Gaussian-gradients. IEEE Trans. Multimedia 23, 1367–1382 (2021)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Dynamic texture description using adapted bipolar-invariant and blurred features. Multidimens. Syst. Signal Process. 33(3), 945–979 (2022)
Nguyen, T.P., Manzanera, A., Kropatsch, W.G., N’Guyen, X.S.: Topological attribute patterns for texture recognition. Pattern Recognit. Lett. 80, 91–97 (2016)
Zhao, Y., Huang, D.S., Jia, W.: Completed local binary count for rotation invariant texture classification. IEEE Trans. IP 21(10), 4492–4497 (2012)
Zhao, X., Lin, Y., Heikkilä, J.: Dynamic texture recognition using volume local binary count patterns with an application to 2D face spoofing detection. IEEE Trans. Multimedia 20(3), 552–566 (2018)
Nguyen, T.T., Nguyen, T.P., Thirion-Moreau, N.: Locating robust patterns based on invariant of LTP-based features. Pattern Recognit. Lett. 165, 9–16 (2023)
Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 1167–1186 (1991)
Nguyen, T.P., Vu, N.S., Manzanera, A.: Statistical binary patterns for rotational invariant texture classification. Neurocomputing 173, 1565–1577 (2016)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Smooth-invariant Gaussian features for dynamic texture recognition. In: ICIP, pp. 4400–4404 (2019)
Nguyen, T.T., Nguyen, T.P., Bouchara, F., Vu, N.: Volumes of blurred-invariant Gaussians for dynamic texture classification. In: Vento M, Percannella G (eds). CAIP, pp. 155–167 (2019)
Van Wyk, M., Wässle, H., Taylor, W.R.: Receptive field properties of ON-and OFF-ganglion cells in the mouse retina. Vis. Neurosci. 26(3), 297–308 (2009)
Vu, N., Nguyen, T.P., Garcia, C.: Improving texture categorization with biologically-inspired filtering. Image Vis. Comput. 32(6–7), 424–436 (2014)
Dubois, S., Péteri, R., Ménard, M.: Characterization and recognition of dynamic textures based on the 2D+T curvelet transform. Signal Image Video Process. 9(4), 819–830 (2015)
Tiwari, D., Tyagi, V.: Dynamic texture recognition using multiresolution edge-weighted local structure pattern. Comput. Electr. Eng. 62, 485–498 (2017)
Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. IP 19(2), 533–544 (2010)
Fan, K., Hung, T.: A novel local pattern descriptor - local vector pattern in high-order derivative space for face recognition. IEEE Trans. IP 23(7), 2877–2891 (2014)
Liu, L., Lao, S., Fieguth, P.W., Guo, Y., Wang, X., Pietikäinen, M.: Median robust extended local binary pattern for texture classification. IEEE Trans. IP 25(3), 1368–1381 (2016)
Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large linear classification. JMLR 9, 1871–1874 (2008)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Completed local structure patterns on three orthogonal planes for dynamic texture recognition. In: IPTA, pp. 1–6 (2017)
Tiwari, D., Tyagi, V.: Improved Weber’s law based local binary pattern for dynamic texture recognition. Multimedia Tools Appl. 76(5), 6623–6640 (2017)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Dynamic texture representation based on hierarchical local patterns. In: ACIVS, pp. 277–289 (2020)
Xu, Y., Quan, Y., Zhang, Z., Ling, H., Ji, H.: Classifying dynamic textures via spatiotemporal fractal analysis. Pattern Recognit. 48(10), 3239–3248 (2015)
Nguyen, T.T., Nguyen, T.P., Bouchara, F.: Dynamic texture representation based on oriented magnitudes of Gaussian gradients. J. Vis. Commun. Image Represent. 81, 103330 (2021)
Ren, J., Jiang, X., Yuan, J., Wang, G.: Optimizing LBP structure for visual recognition using binary quadratic programming. SPL 21(11), 1346–1350 (2014)
Hadji, I., Wildes, R.P.: A spatiotemporal oriented energy network for dynamic texture recognition. In: ICCV, pp. 3085–3093 (2017)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS, pp. 568–576 (2014)
Derpanis, K.G., Wildes, R.P.: Spacetime texture representation and recognition based on a spatiotemporal orientation analysis. IEEE Trans. PAMI 34(6), 1193–1205 (2012)
Acknowledgements
We would like to express our sincere appreciation for the valuable and insightful comments of the editors and reviewers, which allow us to clarify the presentation of this work. Besides, we would like to send many thanks to those in Faculty of IT, HCMC University of Technology and Education, Thu Duc City, Ho Chi Minh City, Vietnam, who gave us crucial supports in high-performing computers for the experiments on the large datasets.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nguyen, T.T., Nguyen, T.P. & Bouchara, F. Representing dynamic textures based on polarized gradient features. Machine Vision and Applications 34, 92 (2023). https://doi.org/10.1007/s00138-023-01438-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-023-01438-7