Abstract
Hyperspectral images (HSI) contain rich ground object information, which has great potential in classification. However, the large amount of data and noise also pose a challenge to HSI classification. In this paper, a new framework based on band selection and multi-scale structure features is proposed, which mainly consists of the following steps. Firstly, the spectral dimension of the HSI is reduced with the clustering average method based on information divergence. Secondly, the detailed multi-scale structure features of HSI are extracted by using multi-parameter relative total variation. Thirdly, in order to reduce noise and highlight structural features, bilateral filtering is used to fine-tune the extracted structural features. Finally, the improved quantum particle swarm optimization algorithm is proposed to optimize the parameters of SVM. A lot of experiment results on two hyperspectral datasets show that the proposed method performs better than several state-of-the-art methods.
Similar content being viewed by others
Data availability
The data can be available online http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
References
Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1153 (1985). https://doi.org/10.1126/science.228.4704.1147
Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N.M., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. (2013). https://doi.org/10.1109/MGRS.2013.2244672
Zhang, X., Sun, Y., Shang, K., Zhang, L., Wang, S.: Crop classification based on feature band set construction and object-oriented approach using hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4117–4128 (2016). https://doi.org/10.1109/JSTARS.2016.2577339
Zhang, L., Zhang, L., Tao, D., Huang, X., Du, B.: Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. IEEE Trans. Geosci. Remote Sens. 52(8), 4955–4965 (2014). https://doi.org/10.1109/TGRS.2013.2286195
Hörig, B., Kühn, F., Oschütz, F., Lehmann, F.: HyMap hyperspectral remote sensing to detect hydrocarbons. Int. J. Remote Sens. 22(8), 1413–1422 (2001). https://doi.org/10.1080/01431160120909
Qin, Q., Zhang, Z., Chen, L., Wang, N., Zhang, C.: Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection. J. Appl. Remote Sens. 10(1), 016017 (2016). https://doi.org/10.1117/1.jrs.10.016017
Yang, C., Tan, Y., Bruzzone, L., Lu, L., Guan, R.: Discriminative feature metric learning in the affinity propagation model for band selection in hyperspectral images. Remote Sens. 9(8), 782 (2017). https://doi.org/10.3390/rs9080782
Ul Haq, Q.S., Tao, L., Sun, F., Yang, S.: A fast and robust sparse approach for hyperspectral data classification using a few labeled samples. IEEE Trans. Geosci. Remote Sens. 50(6), 2287–2302 (2012). https://doi.org/10.1109/TGRS.2011.2172617
Li, X., Chen, M., Wang, Q.: Quantifying and detecting collective motion in crowd scenes. IEEE Trans. Image Process. 29, 5571–5583 (2020)
Licciardi, G., Marpu, P.R., Chanussot, J., Benediktsson, J.A.: Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci. Remote Sens. Lett. 9(3), 447–451 (2012). https://doi.org/10.1109/LGRS.2011.2172185
Villa, A., Benediktsson, J.A., Chanussot, J., Jutten, C.: Hyperspectral image classification with independent component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 49(12), 4865–4876 (2011). https://doi.org/10.1109/TGRS.2011.2153861
Rellier, G., Descombes, X., Falzon, F., Zerubia, J.: Texture feature analysis using a Gauss-Markov model in hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 42(7), 1543–1551 (2004). https://doi.org/10.1109/TGRS.2004.830170
Wang, L., Wang, X., Wang, Q.: Using 250-m MODIS data for enhancing spatiotemporal fusion by sparse representation. Photogramm. Eng. Remote Sens. 86(6), 383–392 (2020). https://doi.org/10.14358/PERS.86.6.383
Du, P., Bai, X., Tan, K., Xue, Z., Samat, A., Xia, J., Li, E., Su, H., Liu, W.: Advances of four machine learning methods for spatial data handling: a review. J. Geovis. Spat. Anal. 4(1), 1–25 (2020). https://doi.org/10.1007/s41651-020-00048-5
Marpu, P.R., Pedergnana, M., Dalla Mura, M., Benediktsson, J.A., Bruzzone, L.: Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data. IEEE Geosci. Remote Sens. Lett. 10(2), 293–297 (2013). https://doi.org/10.1109/LGRS.2012.2203784
Hadoux, X., Jay, S., Rabatel, G., Gorretta, N.: A spectral-spatial approach for hyperspectral image classification using spatial regularization on supervised score image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2361–2369 (2015). https://doi.org/10.1109/JSTARS.2014.2347414
Leng, J., Li, T., Bai, G., Dong, Q., Dong, H.: Cube-CNN-SVM: a novel hyperspectral image classification method. In: Proceedings—2016 IEEE 28th International Conference on Tools with Artificial Intelligence, ICTAI 2016 (2017). https://doi.org/10.1109/ICTAI.2016.0155
Jamshidpour, N., Homayouni, S., Safari, A.: Graph-based semi-supervised hyperspectral image classification using spatial information. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, vol. 42 (2017). https://doi.org/10.5194/isprs-archives-XLII-4-W4-91-2017
Liao, J., Wang, L., Hao, S.: Hyperspectral image classification based on adaptive optimisation of morphological profile and spatial correlation information. Int. J. Remote Sens. 39(23), 9159–9180 (2018). https://doi.org/10.1080/01431161.2018.1508913
Mu, C., Liu, J., Liu, Y., Liu, Y.: Hyperspectral image classification based on active learning and spectral-spatial feature fusion using spatial coordinates. IEEE Access 8, 6768–6781 (2020). https://doi.org/10.1109/ACCESS.2019.2963624
Chen, M., Li, X.: Robust matrix factorization with spectral embedding. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5698–5707 (2020)
Ghamisi, P., Yokoya, N., Li, J., Liao, W., Liu, S., Plaza, J., Rasti, B., Plaza, A.: Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci. Remote Sens. Mag. 5(4), 37–78 (2017)
Yuan, Q., Zhang, L., Shen, H.: Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE Trans. Geosci. Remote Sens. 50(10), 3660–3677 (2012)
Bhattacharya, S., Das, S., Routray, A.: Graph manifold clustering based band selection for hyperspectral face recognition. In: European Signal Processing Conference, vol. 2018-September (2018). https://doi.org/10.23919/EUSIPCO.2018.8553006
Li, Q., Wang, Q., Li, X.: An efficient clustering method for hyperspectral optimal band selection via shared nearest neighbor. Remote Sens. 11(3), 350 (2019). https://doi.org/10.3390/rs11030350
Hayati, S., Saryazdi, S., Nezamabadi-pour, H.: Structure-texture image decomposition for content-based image retrieval. Nashriyyah-i Muhandisi-i Barq va Muhandisi-i Kampyutar-i Iran 32, 115 (2013)
Wu, X., Zheng, J., Wu, C., Cai, Y.: Variational structure-texture image decomposition on manifolds. Signal Process. 93(7), 1773–1784 (2013)
Chen, M., Li, X.: Concept factorization with local centroids. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 5247–5253 (2020)
Cannone, M., Miyakawa, T.: Mathematical Foundation of Turbulent Viscous Flows, vol. 1871, p. 252. Springer (2006)
Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition-modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006)
Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31, 1–10 (2012). https://doi.org/10.1145/2366145.2366158
Cai, X., Cui, Z.: Hungry particle swarm optimization. ICIC Express Lett. 4(3), 1071–1076 (2010)
Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, vol. 1 (2004). https://doi.org/10.1109/cec.2004.1330875
Sun, J., Fang, W., Wu, X., Palade, V., Xu, W.: Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection. Evolut. Comput. 20(3), 349–393 (2012)
Li, X., Chen, M., Nie, F., Wang, Q.: A multiview-based parameter free framework for group detection. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Chen, M., Li, X.: Concept factorization with local centroids. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 5247–5253 (2021). https://doi.org/10.1109/TNNLS.2020.3027068
Li, X., Chen, M., Nie, F., Wang, Q.: Locality adaptive discriminant analysis. In: IJCAI, pp. 2201–2207 (2017)
Wang, Q., Li, Q., Li, X.: Hyperspectral band selection via adaptive subspace partition strategy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(12), 4940–4950 (2019). https://doi.org/10.1109/JSTARS.2019.2941454
Chen, M., Li, X.: Robust matrix factorization with spectral embedding. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5698–5707 (2021). https://doi.org/10.1109/TNNLS.2020.3027351
Duan, P., Kang, X., Li, S., Ghamisi, P.: Noise-robust hyperspectral image classification via multi-scale total variation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(6), 1948–1962 (2019). https://doi.org/10.1109/JSTARS.2019.2915272
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on geoscience and remote sensing. 42(8), 1778–1790 (2004)
Bau, T.C., Sarkar, S., Healey, G.: Hyperspectral region classification using a three-dimensional Gabor filterbank. IEEE Trans. Geosci. Remote Sens. 48(9), 3457–3464 (2010). https://doi.org/10.1109/TGRS.2010.2046494
Acknowledgements
The authors would like to thank the editor and reviewers.
Funding
This research was funded by the National Natural Science Foundation of China under Grant 62002286 and the Strategic Priority Science and Technology Project of Chinese Academy of Sciences(No. XDA23000000).
Author information
Authors and Affiliations
Contributions
Cailing Wang contributed to methodology and funding acquisition; Xiaonan Song contributed to data acquisition, experimental analysis, writing original draft, and writing—review and editing; Jing Zhang performed revision and proofreading.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, C., Song, X. & Zhang, J. Hyperspectral image classification based on clustering dimensionality reduction and multi-scale feature fusion. Machine Vision and Applications 33, 90 (2022). https://doi.org/10.1007/s00138-022-01340-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-022-01340-8