Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multiple feature-based contrast enhancement of ROI of backlit images

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Backlit image is obtained when image is captured with intense reflection of light. It is a frequently observed condition of lighting that can cause significant image quality deterioration. They are a combination of dark and bright regions, and the objects in the image generally appear to be dark. The region of interest (ROI) depicts some dark image regions or objects present in the image. Such ROI has low contrast in backlit images; therefore, visualization is uncertain. In order to visualize the contents properly, enhancement of ROI in backlit images is essential. A novel and simplified approach based on the multiple features of ROI of backlit images is proposed. The proposed approach’s fundamental idea is to blend different features into a single one to enhance the ROI. Global tone mappings, namely gamma correction and logarithmic transform, are performed while preserving global and local contrast effectively to improve the visual quality. In the next step, gradient map and filter-based operations were performed to preserve the image’s naturalness. Furthermore, the proposed method introduces weight maps based on the exposedness to increase the visibility and the fusion of the results. Experimental results based on the contrast measure (CM), discrete entropy (DE), and balanced mean magnitude of relative error (BMMRE) of discrete entropy reveal the proposed approach’s effectiveness and its gains in visual consistency over existing backlit image enhancement algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdoli, M., Nasiri, F., Brault, P., Ghanbari, M.: Quality assessment tool for performance measurement of image contrast enhancement methods. IET Image Proc. 13(5), 833–842 (2019)

    Article  Google Scholar 

  2. Al-Ameen, Z.: Nighttime image enhancement using a new illumination boost algorithm. IET Image Proc. 13(8), 1314–1320 (2019)

    Article  Google Scholar 

  3. Atta, R., Abdel-Kader, R.F.: Brightness preserving based on singular value decomposition for image contrast enhancement. Optik 126(7–8), 799–803 (2015)

    Article  Google Scholar 

  4. Buades, A., Lisani, J.L., Petro, A.B., Sbert, C.: Backlit images enhancement using global tone mappings and image fusion. IET Image Proc. 14(2), 211–219 (2019)

    Article  Google Scholar 

  5. Celik, T.: Spatial entropy-based global and local image contrast enhancement. IEEE Trans. Image Process. 23(12), 5298–5308 (2014)

    Article  MathSciNet  Google Scholar 

  6. Celik, T.: Spatial mutual information and pagerank-based contrast enhancement and quality-aware relative contrast measure. IEEE Trans. Image Process. 25(10), 4719–4728 (2016)

    Article  MathSciNet  Google Scholar 

  7. Celik, T., Li, H.C.: Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement. J. Mod. Opt. 63(16), 1600–1617 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chouhan, R., Biswas, P.K., Jha, R.K.: Enhancement of low-contrast images by internal noise-induced Fourier coefficient rooting. SIViP 9(1), 255–263 (2015)

    Article  Google Scholar 

  9. Dhara, S.K., Sen, D.: Exposure correction and local enhancement for backlit image restoration. In: Pacific-Rim Symposium on Image and Video Technology, pp. 170–183. Springer (2019)

  10. Duncan, C.D.: Advanced Crime Scene Photography. CRC Press, Clermont (2015)

    Google Scholar 

  11. Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., Paisley, J.: A fusion-based enhancing method for weakly illuminated images. Sig. Process. 129, 82–96 (2016)

    Article  Google Scholar 

  12. Hessel, C.: An implementation of the exposure fusion algorithm. Image Process. On Line 8, 369–387 (2018)

    Article  Google Scholar 

  13. Hsia, S.C., Chen, C.J., Yang, W.C.: Improvement of face recognition using light compensation technique on real-time imaging. Imaging Sci. J. 64(6), 334–340 (2016)

    Article  Google Scholar 

  14. Huang, H., Tao, H., Wang, H.: A convolutional neural network based method for low-illumination image enhancement. In: Proceedings of the 2nd International Conference on Artificial Intelligence and Pattern Recognition, pp. 72–77 (2019)

  15. Im, J., Yoon, I., Hayes, M.H., Paik, J.: Dark channel prior-based spatially adaptive contrast enhancement for back lighting compensation. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2464–2468. IEEE (2013)

  16. Jha, R.K., Chouhan, R., Aizawa, K., Biswas, P.K.: Dark and low-contrast image enhancement using dynamic stochastic resonance in discrete cosine transform domain. APSIPA Trans. Signal Inf. Process. 2,(2013)

  17. Kim, N., Lee, S., Chon, E., Hayes, M.H., Paik, J.: Adaptively partitioned block-based backlit image enhancement for consumer mobile devices. In: 2013 IEEE International Conference on Consumer Electronics (ICCE), pp. 393–394. IEEE (2013)

  18. Li, C., Liu, J., Liu, A., Wu, Q., Bi, L.: Global and adaptive contrast enhancement for low illumination gray images. IEEE Access 7, 163395–163411 (2019)

    Article  Google Scholar 

  19. Li, C., Tang, S., Yan, J., Zhou, T.: Low-light image enhancement via pair of complementary gamma functions by fusion. IEEE Access 8, 169887–169896 (2020)

    Article  Google Scholar 

  20. Li, Z., Wu, X.: Learning-based restoration of backlit images. IEEE Trans. Image Process. 27(2), 976–986 (2018)

    Article  MathSciNet  Google Scholar 

  21. Liu, S., Zhang, Y.: Detail-preserving underexposed image enhancement via optimal weighted multi-exposure fusion. IEEE Trans. Consum. Electron. 65(3), 303–311 (2019)

    Article  Google Scholar 

  22. Ma, C., Zeng, S., Li, D.: A new algorithm for backlight image enhancement. In: 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), pp. 840–844. IEEE (2020)

  23. Martorell, O., Sbert, C., Buades, A.: Ghosting-free dct based multi-exposure image fusion. Sig. Process. Image Commun. 78, 409–425 (2019)

    Article  Google Scholar 

  24. Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. In: Computer Graphics Forum, vol. 28, pp. 161–171. Wiley Online Library (2009)

  25. Morel, J.M., Petro, A.B., Sbert, C.: Screened poisson equation for image contrast enhancement. Image Processing On Line 4, 16–29 (2014)

    Article  Google Scholar 

  26. Niu, Y., Wu, X., Shi, G.: Image enhancement by entropy maximization and quantization resolution upconversion. IEEE Trans. Image Process. 25(10), 4815–4828 (2016)

    Article  MathSciNet  Google Scholar 

  27. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graphics Image process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  28. Ren, Y., Ying, Z., Li, T.H., Li, G.: Lecarm: low-light image enhancement using the camera response model. IEEE Trans. Circuits Syst. Video Technol. 29(4), 968–981 (2018)

    Article  Google Scholar 

  29. Rivera, A.R., Ryu, B., Chae, O.: Content-aware dark image enhancement through channel division. IEEE Trans. Image Process. 21(9), 3967–3980 (2012)

    Article  MathSciNet  Google Scholar 

  30. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  31. Shin, J., Oh, H., Kim, K., Kang, K.: Automatic image enhancement for under-exposed, over-exposed, or backlit images. Electron. Imaging 2019(14), 88–1 (2019)

    Article  Google Scholar 

  32. Singh, H., Kumar, V., Bhooshan, S.: A novel approach for detail-enhanced exposure fusion using guided filter. Sci. World J. 2014,(2014)

  33. Srinivas, K., Bhandari, A.K., Singh, A.: Low-contrast image enhancement using spatial contextual similarity histogram computation and color reconstruction. J. Franklin Inst. 357(18), 13941–13963 (2020)

    Article  Google Scholar 

  34. Ueda, Y., Moriyama, D., Koga, T., Suetake, N.: Histogram specification-based image enhancement for backlit image. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 958–962. IEEE (2020)

  35. Wang, Q., Fu, X., Zhang, X.P., Ding, X.: A fusion-based method for single backlit image enhancement. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4077–4081. IEEE (2016)

  36. Wang, S., Luo, G.: Naturalness preserved image enhancement using a priori multi-layer lightness statistics. IEEE Trans. Image Process. 27(2), 938–948 (2017)

    Article  MathSciNet  Google Scholar 

  37. Wang, W., Wu, X., Yuan, X., Gao, Z.: An experiment-based review of low-light image enhancement methods. IEEE Access 8, 87884–87917 (2020)

    Article  Google Scholar 

  38. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  39. Wang, Y.F., Liu, H.M., Fu, Z.W.: Low-light image enhancement via the absorption light scattering model. IEEE Trans. Image Process. 28(11), 5679–5690 (2019)

    Article  MathSciNet  Google Scholar 

  40. Yadav, H.B., Yadav, D.K.: A fuzzy logic based approach for phase-wise software defects prediction using software metrics. Inf. Softw. Technol. 63, 44–57 (2015)

    Article  Google Scholar 

  41. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3015–3022 (2017)

  42. Zarie, M., Pourmohammad, A., Hajghassem, H.: Image contrast enhancement using triple clipped dynamic histogram equalisation based on standard deviation. IET Image Proc. 13(7), 1081–1089 (2019)

    Article  Google Scholar 

  43. Zhao, M., Cheng, D., Wang, L.: Backlit image enhancement based on foreground extraction. In: 12th International Conference on Graphics and Image Processing (ICGIP 2020), vol. 11720, p. 1172019. International Society for Optics and Photonics (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, G., Yadav, D.K. Multiple feature-based contrast enhancement of ROI of backlit images. Machine Vision and Applications 33, 14 (2022). https://doi.org/10.1007/s00138-021-01272-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-021-01272-9

Keywords

Navigation