Abstract
Chromosome analysis is an important approach to detecting genetic diseases. However, the process of identifying chromosomes in metaphase images can be challenging and time-consuming. Therefore, it is important to use automatic methods for detecting chromosomes to aid diagnosis. This work proposes a study of deep learning approaches for classification and detection of chromosome in metaphase images. Furthermore, we propose a method for detecting chromosomes, which includes new stages for preprocessing and reducing false positives and false negatives. The proposed method is evaluated using 74 chromosome images in the metaphase stage, which were obtained from the CRCN-NE database, resulting in 2174 chromosome regions. We undertake three types of evaluation: segmentation; classification of cropped regions of chromosomes; and detection of chromosomes in the original images. For the segmentation analysis, we evaluated the Otsu, adaptive, fuzzy and fuzzy-adaptive methods. For classification and detection, we evaluated the following state-of-the-art algorithms: VGG16, VGG19, Inception v3, MobileNet, Xception, Sharma and MiniVGG. The classification results showed that the proposed approach, using segmented images, obtained better results than using RGB images. Furthermore, when analyzing deep learning approaches, the VGG16 algorithm obtained the best results, using fine tuning, with a sensitivity of 0.98, specificity of 0.99 and AUC of 0.955. The results also showed that the proposed negative reduction method increased sensitivity by 18%, while maintaining the specificity value. Deep learning methods have been proved to be efficient at detecting chromosomes, but preprocessing and post-processing are important to avoid false negatives. Therefore, using binary images and adding stages for reducing false positives and false negatives are necessary in order to increase the quality of the images of the chromosomes detected.
Similar content being viewed by others
References
Pantaleão, C.H.Z., et al.: Contribuição à análise e classificação citogenética baseada no processamento digital de imagens e no enfoque lógico-combinatório, 168 p. Doctoral dissertation, UFSC - Universidade Federal de Santa Catarina, Florianópolis (2003)
Cunha, D.M.d.C., et al.: Análise cromossômica por microarranjos em probandos com indicação clínica de síndrome de down sem alterações cariotípicas, 54 p, Masters dissertation, Pontifícia Universidade Católica de Goiás, Goiânia (2015)
Nussbaum, R.L., Mcinnes, R.R., Willard, H.: Thompson & Thompson: Genética médica. Elsevier Brasil (2008)
Grisan, E., Poletti, E., Ruggeri, A.: Automatic segmentation and disentangling of chromosomes in q-band prometaphase images. IEEE Trans. Inf. Technol. Biomed. 13, 575–581 (2009)
Arora, T., Dhir, R.: A review of metaphase chromosome image selection techniques for automatic karyotype generation. Med. Biol. Eng. Comput. 54, 1147–1157 (2016)
Organization, W.H., et al.: Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies, Technical Report, International Atomic Energy Agency (2011)
Roemer, E., Zenzen, V., Conroy, L.L., Luedemann, K., Dempsey, R., Schunck, C., Sticken, E.T.: Automation of the in vitro micronucleus and chromosome aberration assay for the assessment of the genotoxicity of the particulate and gas-vapor phase of cigarette smoke. Toxicol. Mech. Methods 25, 320–333 (2015)
Kurtz, G.C.: Metodologias para detecção do centrômero no processo de identificação de cromossomos, 116 p. Masters Dissertation, Universidade Federal de Santa Maria, Santa Maria (2011)
Da Matta, M., Dümpelmann, M., Lemos-Pinto, M., Fernandes, T., Amaral, A.: Processamento de imagens em biodosimetria: influência da qualidade das preparações cromossômicas. Sci. Lena 9 (2013)
Grisan, E., Poletti, E., Ruggeri, A.: An improved segmentation of chromosomes in q-band prometaphase images using a region based level set. In: World Congress on Medical Physics and Biomedical Engineering, September 7–2, Munich, Germany, Springer, pp. 748–751 (2009)
Wang, X., Li, S., Liu, H., Wood, M., Chen, W.R., Zheng, B.: Automated identification of analyzable metaphase chromosomes depicted on microscopic digital images. J. Biomed. Informatics 41, 264–271 (2008)
Uttamatanin, R., Yuvapoositanon, P., Intarapanich, A., Kaewkamnerd, S., Phuksaritanon, R., Assawamakin, A., Tongsima, S.: Metasel: a metaphase selection tool using a Gaussian-based classification technique. BMC Bioinformatics 14, S13 (2013)
Vala, H.J., Baxi, A.: A review on otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2, 387–389 (2013)
Gagula-Palalic, S., Can, M.: Human chromosome classification using competitive neural network teams (cnnt) and nearest neighbor. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 626–629. IEEE (2014)
Andrade, M.F., Cordeiro, F.R., Macário, V., Lima, F.F., Hwang, S.F., Mendonça, J.C.: A fuzzy-adaptive approach to segment metaphase chromosome images. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, pp. 290–295
Qin, Y., Wen, J., Zheng, H., Huang, X., Yang, J., Wu, L., Song, N., Zhu, Y.-M., Yang, G.-Z.: Varifocal-net: a chromosome classification approach using deep convolutional networks. IEEE Trans. Med. Imaging 38, 2569–2581 (2019)
Sharma, M., Saha, O., Sriraman, A., Hebbalaguppe, R., Vig, L., Karande, S.: Crowdsourcing for chromosome segmentation and deep classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp. 786–793
Javan-Roshtkhari, M., Setarehdan, S.K.: A new approach to automatic classification of the curved chromosomes. In: 5th International Symposium on Image and Signal Processing and Analysis, (2007). ISPA 2007. IEEE, pp. 19–24
Swati, G.G., Yadav, M., Sharma, M., Vig, L., et al.: Siamese networks for chromosome classification. In: ICCV Workshop, pp. 72–81
Estandarte, A.K.C.: A Review of the Different Staining Techniques for Human Metaphase Chromosomes. Department of Chemistry, University College London, University of London, London (2012)
Abid, F., Hamami, L.: A survey of neural network based automated systems for human chromosome classification. Artif. Intell. Rev. 49, 41–56 (2018)
Andrade, M.F.S., Cordeiro, F.R., Silva, J.J.G., Lima, F.F., Hwang, S., Macario, V.: CRCN-NE Chromosomes DataSet (Version 1.3) [Data set]. Zenodo. (2019) https://doi.org/10.5281/zenodo.3229434
Arora, T., Dhir, R.: Segmentation approaches for human metaspread chromosome images using level set methods. In: International Conference on Mass Data Analysis of Images and Signals MDA 2016 in New York
Dougherty, A.W., You, J.: A kernel-based adaptive fuzzy c-means algorithm for m-fish image segmentation. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 198–205
Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv:1704.04861
Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258
Huh, M., Agrawal, P., Efros, A.A.: What makes imagenet good for transfer learning? (2016). arXiv:1608.08614
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990)
Chollet, F. & others, 2015. Keras. Available at: https://github.com/fchollet/keras
Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)
Poletti, E., Zappelli, F., Ruggeri, A., Grisan, E.: A review of thresholding strategies applied to human chromosome segmentation. Comput. Methods Programs Biomed. 108, 679–688 (2012)
Acknowledgements
The authors would like to thank FACEPE and CRCN-NE for supporting this project. We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp used for this research.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Andrade, M.F.S., Dias, L.V., Macario, V. et al. A study of deep learning approaches for classification and detection chromosomes in metaphase images. Machine Vision and Applications 31, 65 (2020). https://doi.org/10.1007/s00138-020-01115-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-020-01115-z