Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A study of deep learning approaches for classification and detection chromosomes in metaphase images

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Chromosome analysis is an important approach to detecting genetic diseases. However, the process of identifying chromosomes in metaphase images can be challenging and time-consuming. Therefore, it is important to use automatic methods for detecting chromosomes to aid diagnosis. This work proposes a study of deep learning approaches for classification and detection of chromosome in metaphase images. Furthermore, we propose a method for detecting chromosomes, which includes new stages for preprocessing and reducing false positives and false negatives. The proposed method is evaluated using 74 chromosome images in the metaphase stage, which were obtained from the CRCN-NE database, resulting in 2174 chromosome regions. We undertake three types of evaluation: segmentation; classification of cropped regions of chromosomes; and detection of chromosomes in the original images. For the segmentation analysis, we evaluated the Otsu, adaptive, fuzzy and fuzzy-adaptive methods. For classification and detection, we evaluated the following state-of-the-art algorithms: VGG16, VGG19, Inception v3, MobileNet, Xception, Sharma and MiniVGG. The classification results showed that the proposed approach, using segmented images, obtained better results than using RGB images. Furthermore, when analyzing deep learning approaches, the VGG16 algorithm obtained the best results, using fine tuning, with a sensitivity of 0.98, specificity of 0.99 and AUC of 0.955. The results also showed that the proposed negative reduction method increased sensitivity by 18%, while maintaining the specificity value. Deep learning methods have been proved to be efficient at detecting chromosomes, but preprocessing and post-processing are important to avoid false negatives. Therefore, using binary images and adding stages for reducing false positives and false negatives are necessary in order to increase the quality of the images of the chromosomes detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Pantaleão, C.H.Z., et al.: Contribuição à análise e classificação citogenética baseada no processamento digital de imagens e no enfoque lógico-combinatório, 168 p. Doctoral dissertation, UFSC - Universidade Federal de Santa Catarina, Florianópolis (2003)

  2. Cunha, D.M.d.C., et al.: Análise cromossômica por microarranjos em probandos com indicação clínica de síndrome de down sem alterações cariotípicas, 54 p, Masters dissertation, Pontifícia Universidade Católica de Goiás, Goiânia (2015)

  3. Nussbaum, R.L., Mcinnes, R.R., Willard, H.: Thompson & Thompson: Genética médica. Elsevier Brasil (2008)

  4. Grisan, E., Poletti, E., Ruggeri, A.: Automatic segmentation and disentangling of chromosomes in q-band prometaphase images. IEEE Trans. Inf. Technol. Biomed. 13, 575–581 (2009)

    Article  Google Scholar 

  5. Arora, T., Dhir, R.: A review of metaphase chromosome image selection techniques for automatic karyotype generation. Med. Biol. Eng. Comput. 54, 1147–1157 (2016)

    Article  Google Scholar 

  6. Organization, W.H., et al.: Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies, Technical Report, International Atomic Energy Agency (2011)

  7. Roemer, E., Zenzen, V., Conroy, L.L., Luedemann, K., Dempsey, R., Schunck, C., Sticken, E.T.: Automation of the in vitro micronucleus and chromosome aberration assay for the assessment of the genotoxicity of the particulate and gas-vapor phase of cigarette smoke. Toxicol. Mech. Methods 25, 320–333 (2015)

    Article  Google Scholar 

  8. Kurtz, G.C.: Metodologias para detecção do centrômero no processo de identificação de cromossomos, 116 p. Masters Dissertation, Universidade Federal de Santa Maria, Santa Maria (2011)

  9. Da Matta, M., Dümpelmann, M., Lemos-Pinto, M., Fernandes, T., Amaral, A.: Processamento de imagens em biodosimetria: influência da qualidade das preparações cromossômicas. Sci. Lena 9 (2013)

  10. Grisan, E., Poletti, E., Ruggeri, A.: An improved segmentation of chromosomes in q-band prometaphase images using a region based level set. In: World Congress on Medical Physics and Biomedical Engineering, September 7–2, Munich, Germany, Springer, pp. 748–751 (2009)

  11. Wang, X., Li, S., Liu, H., Wood, M., Chen, W.R., Zheng, B.: Automated identification of analyzable metaphase chromosomes depicted on microscopic digital images. J. Biomed. Informatics 41, 264–271 (2008)

    Article  Google Scholar 

  12. Uttamatanin, R., Yuvapoositanon, P., Intarapanich, A., Kaewkamnerd, S., Phuksaritanon, R., Assawamakin, A., Tongsima, S.: Metasel: a metaphase selection tool using a Gaussian-based classification technique. BMC Bioinformatics 14, S13 (2013)

    Article  Google Scholar 

  13. Vala, H.J., Baxi, A.: A review on otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2, 387–389 (2013)

    Google Scholar 

  14. Gagula-Palalic, S., Can, M.: Human chromosome classification using competitive neural network teams (cnnt) and nearest neighbor. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 626–629. IEEE (2014)

  15. Andrade, M.F., Cordeiro, F.R., Macário, V., Lima, F.F., Hwang, S.F., Mendonça, J.C.: A fuzzy-adaptive approach to segment metaphase chromosome images. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, pp. 290–295

  16. Qin, Y., Wen, J., Zheng, H., Huang, X., Yang, J., Wu, L., Song, N., Zhu, Y.-M., Yang, G.-Z.: Varifocal-net: a chromosome classification approach using deep convolutional networks. IEEE Trans. Med. Imaging 38, 2569–2581 (2019)

    Article  Google Scholar 

  17. Sharma, M., Saha, O., Sriraman, A., Hebbalaguppe, R., Vig, L., Karande, S.: Crowdsourcing for chromosome segmentation and deep classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp. 786–793

  18. Javan-Roshtkhari, M., Setarehdan, S.K.: A new approach to automatic classification of the curved chromosomes. In: 5th International Symposium on Image and Signal Processing and Analysis, (2007). ISPA 2007. IEEE, pp. 19–24

  19. Swati, G.G., Yadav, M., Sharma, M., Vig, L., et al.: Siamese networks for chromosome classification. In: ICCV Workshop, pp. 72–81

  20. Estandarte, A.K.C.: A Review of the Different Staining Techniques for Human Metaphase Chromosomes. Department of Chemistry, University College London, University of London, London (2012)

    Google Scholar 

  21. Abid, F., Hamami, L.: A survey of neural network based automated systems for human chromosome classification. Artif. Intell. Rev. 49, 41–56 (2018)

    Article  Google Scholar 

  22. Andrade, M.F.S., Cordeiro, F.R., Silva, J.J.G., Lima, F.F., Hwang, S., Macario, V.: CRCN-NE Chromosomes DataSet (Version 1.3) [Data set]. Zenodo. (2019) https://doi.org/10.5281/zenodo.3229434

  23. Arora, T., Dhir, R.: Segmentation approaches for human metaspread chromosome images using level set methods. In: International Conference on Mass Data Analysis of Images and Signals MDA 2016 in New York

  24. Dougherty, A.W., You, J.: A kernel-based adaptive fuzzy c-means algorithm for m-fish image segmentation. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 198–205

  25. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)

    Article  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826

  28. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv:1704.04861

  29. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258

  30. Huh, M., Agrawal, P., Efros, A.A.: What makes imagenet good for transfer learning? (2016). arXiv:1608.08614

  31. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  32. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  33. Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990)

    Article  Google Scholar 

  34. Chollet, F. & others, 2015. Keras. Available at: https://github.com/fchollet/keras

  35. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)

  36. Poletti, E., Zappelli, F., Ruggeri, A., Grisan, E.: A review of thresholding strategies applied to human chromosome segmentation. Comput. Methods Programs Biomed. 108, 679–688 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FACEPE and CRCN-NE for supporting this project. We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe R. Cordeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, M.F.S., Dias, L.V., Macario, V. et al. A study of deep learning approaches for classification and detection chromosomes in metaphase images. Machine Vision and Applications 31, 65 (2020). https://doi.org/10.1007/s00138-020-01115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01115-z

Keywords

Navigation