Abstract
Autonomous detection of structural defect from images is a promising, but also challenging task to replace manual inspection. With the development of deep learning algorithms, several studies have adopted deep convolutional neural networks (CNN) or fully convolutional networks (FCN) to detect cracks in pixel-level. However, a fundamental property of cracks, that they are rotation invariant, has never been exploited. Although the rotation-invariant property can be implicitly learned by data augmentation, the network needs more parameters to learn features of different orientations and thus tend to overfit the training data. In this study, a rotation-invariant FCN called ARF-Crack is proposed that utilizes the rotation-invariant property of cracks explicitly. The architecture of a state-of-the-art FCN called DeepCrack for pixel-level crack detection is adopted and revised where active rotating filters (ARFs) are used to encode the rotation-invariant property into the network. The proposed ARF-Crack is evaluated on several benchmark datasets including concrete cracks, pavement cracks and corrosion images. The experimental results show that the proposed ARF-Crack requires less number of network parameters and achieves the highest average precision values for all the benchmark datasets compared to other approaches. The proposed ARF-Crack has the potential of detecting other rotation-invariant defects.
Similar content being viewed by others
References
Abdel-Qader, I., Abudayyeh, O., Kelly, M.E.: Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civ. Eng. 17(4), 255–263 (2003). https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder–decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Bang, S., Park, S., Kim, H., Kim, H.: Encoder–decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civ. Infrastruct. Eng. 34(8), 713–727 (2019)
Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. arXiv:1206.5533 [cs] (2012)
Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017). https://doi.org/10.1111/mice.12263
Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans. Ind. Electron. 65(5), 4392–4400 (2018)
Chen, F.C., Jahanshahi, M.R., Wu, R.T., Joffe, C.: A texture-based video processing methodology using bayesian data fusion for autonomous crack detection on metallic surfaces. Comput. Aided Civ. Infrastruct. Eng. 32(4), 271–287 (2017). https://doi.org/10.1111/mice.12256
Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)
Cheng, H.D., Chen, J.R., Glazier, C., Hu, Y.G.: Novel approach to pavement cracking detection based on fuzzy set theory. J. Comput. Civ. Eng. 13(4), 270–280 (1999). https://doi.org/10.1061/(ASCE)0887-3801(1999)13:4(270)
Cheng, H.D., Shi, X.J., Glazier, C.: Real-time image thresholding based on sample space reduction and interpolation approach. J. Comput. Civ. Eng. 17(4), 264–272 (2003). https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(264)
Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. arXiv preprint arXiv:1602.02660 (2016)
Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Notices R. astron. soc. 450(2), 1441–1459 (2015)
Eisenbach, M., Stricker, R., Seichter, D., Amende, K., Debes, K., Sesselmann, M., Ebersbach, D., Stoeckert, U., Gross, H.M.: How to get pavement distress detection ready for deep learning? A systematic approach. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2039–2047. IEEE (2017)
Fan, Z., Wu, Y., Lu, J., Li, W.: Automatic Pavement Crack Detection Based on Structured Prediction with the Convolutional Neural Network. arXiv preprint arXiv:1802.02208 (2018)
Fujita, Y., Hamamoto, Y.: A robust automatic crack detection method from noisy concrete surfaces. Mach. Vis. Appl. 22(2), 245–254 (2010). https://doi.org/10.1007/s00138-009-0244-5
Geusebroek, J.M., Smeulders, A.W., Geerts, H.: A minimum cost approach for segmenting networks of lines. Int. J. Comput. Vis. 43(2), 99–111 (2001)
Jahanshahi, M.R., Chen, F.C., Joffe, C., Masri, S.F.: Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants. Struct. Infrastruct. Eng. 13(8), 1013–1026 (2017)
Jahanshahi, M.R., Masri, S.F., Padgett, C.W., Sukhatme, G.S.: An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Mach. Vis. Appl. 24(2), 227–241 (2011). https://doi.org/10.1007/s00138-011-0394-0
Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., Fieguth, P.: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inform. 29(2), 196–210 (2015). https://doi.org/10.1016/j.aei.2015.01.008
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3000–3009 (2017)
Liu, Y., Yao, J., Lu, X., Xie, R., Li, L.: DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338, 139–153 (2019)
Liu, Z., Cao, Y., Wang, Y., Wang, W.: Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom. Constr. 104, 129–139 (2019)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Marcos, D., Volpi, M., Tuia, D.: Learning rotation invariant convolutional filters for texture classification. In: International Conference on Pattern Recognition (ICPR), pp. 2012–2017 (2016)
Nair, V., Hinton, G.E.: Rectified Linear Units Improve Restricted Boltzmann Machines. In: Proceedings 27th International Conference on Machine Learning (ICML’10) pp. 807–814 (2010)
Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)
Qu, Z., Bai, L., An, S.Q., Ju, F.R., Liu, L.: Lining seam elimination algorithm and surface crack detection in concrete tunnel lining. J. Electron. Imaging 25(6), 063004 (2016)
Shi, Y., Cui, L., Qi, Z., Meng, F., Chen, Z.: Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 17(12), 3434–3445 (2016)
Wang, K.C., Zhang, A., Li, J.Q., Fei, Y., Chen, C., Li, B.: Deep learning for asphalt pavement cracking recognition using convolutional neural network. Airfield Highw. Pavements 2017, 166–177 (2017)
Wang, X., Hu, Z.: Grid-based pavement crack analysis using deep learning. In: International Conference on Transportation Information and Safety (ICTIS), pp. 917–924 (2017)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)
Yamaguchi, T., Hashimoto, S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach. Vis. Appl. 21(5), 797–809 (2009). https://doi.org/10.1007/s00138-009-0189-8
Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019)
Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., Yang, X.: Automatic pixel-level crack detection and measurement using fully convolutional network. Comput. Aided Civ. Infrastruct. Eng. (2018). https://doi.org/10.1111/mice.12412
Zhang, A., Wang, K.C., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q., Chen, C.: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comp. Aided Civ. Infrastruct. Eng. 32(10), 805–819 (2017)
Zhang, K., Cheng, H., Zhang, B.: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning. J. Comput. Civ. Eng. 32(2), 04018001 (2018)
Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J.: Road crack detection using deep convolutional neural network. In: Proceedings 2016 IEEE International Conference on Image Processing (ICIP’16), pp. 3708–3712 (2016). 10.1109/ICIP.2016.7533052
Zhou, Y., Ye, Q., Qiu, Q., Jiao, J.: Oriented response networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2017)
Zou, Q., Zhang, Z., Li, Q., Qi, X., Wang, Q., Wang, S.: DeepCrack: Learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28(3), 1498–1512 (2019)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, FC., Jahanshahi, M.R. ARF-Crack: rotation invariant deep fully convolutional network for pixel-level crack detection. Machine Vision and Applications 31, 47 (2020). https://doi.org/10.1007/s00138-020-01098-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-020-01098-x