Abstract
In this paper, multiple instance learning (MIL) algorithms to automatically perform root detection and segmentation in minirhizotron imagery using only image-level labels are proposed. Root and soil characteristics vary from location to location, and thus, supervised machine learning approaches that are trained with local data provide the best ability to identify and segment roots in minirhizotron imagery. However, labeling roots for training data (or otherwise) is an extremely tedious and time-consuming task. This paper aims to address this problem by labeling data at the image level (rather than the individual root or root pixel level) and train algorithms to perform individual root pixel level segmentation using MIL strategies. Three MIL methods (multiple instance adaptive cosine coherence estimator, multiple instance support vector machine, multiple instance learning with randomized trees) were applied to root detection and compared to non-MIL approaches. The results show that MIL methods improve root segmentation in challenging minirhizotron imagery and reduce the labeling burden. In our results, multiple instance support vector machine outperformed other methods. The multiple instance adaptive cosine coherence estimator algorithm was a close second with an added advantage that it learned an interpretable root signature which identified the traits used to distinguish roots from soil and did not require parameter selection.
Similar content being viewed by others
References
Liu, K., He, A., Ye, C., Liu, S., Lu, J., Gao, M., Fan, Y., Lu, B., Tian, X., Zhang, Y.: Root morphological traits and spatial distribution under different nitrogen treatments and their relationship with grain yield in super hybrid rice. Sci. Rep. 8, 131 (2018)
Hammer, G.L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., Zinselmeier, C., Paszkiewicz, S., Cooper, M.: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop. Sci. 49, 299–312 (2009)
Taylor, H.M., Upchurch, D.R., Brown, J.M., Rogers, H.H.: Some methods of root investigations. In: McMichael, B.L., Persson, H. (eds.) Plants Roots and Their Environment, pp. 553–564. Elsevier Science Publisher B. V., New York (1991)
Bates, G.H.: A device for the observation of root growth in the soil. Nature 139, 966–967 (1937)
Rewald, B., Ephrath, J.E.: Minirhizotron techniques. In: Eshel, A., Beeckman, T. (eds.) Plant Roots: The Hidden Half, 4th edn, pp. 421–429. CRC Press, Hoboken (2013)
Waddington, J.: Observation of plant roots in situ. Can. J. Bot. 49, 1850–1852 (1971)
Johnson, M.G., Tingey, D.T., Phillips, D.L., Storm, M.J.: Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45, 263–289 (2001)
Shojaedini, S.V., Heidari, M.: A new method for root detection in minirhizotron images: hypothesis testing based on entropy-based geometric level set decision. IJE Trans. A Basics 27, 91–100 (2013)
Zeng, G., Birchfield, S.T., Wells, C.E.: Detecting and measuring fine roots in minirhizotron images using matched filtering and local entropy thresholding. Mach. Vis. Appl. 17, 265–278 (2006)
Zeng, G., Birchfield, S.T., Wells, C.E.: Rapid automated detection of roots in minirhizotron images. Mach. Vis. Appl. 21, 309–317 (2010)
Xu, W., Yu, G., Zare, A., Zurweller, B., Rowland, D., Reyes-Cabrera, J., Fritschi, F.B., Matamala, R., Juenger, T.E.: Overcoming Small Minirhizotron Datasets Using Transfer Learning. arXiv preprint arXiv:1903.09344 (2019)
Wang, T., Rostamza, M., Song, Z., Wang, L., McNickle, G., Iyer-Pascuzzi, A.S., Qiu, Z., Jin, J.: SegRoot: a high throughput segmentation method for root image analysis. Comput. Electron. Agric. 154, 25–35 (2018)
Yasrab, R., Atkinson, J.A., Wells, D.M., French, A.P., Pridmore, T.P., Pound, M.P.: RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience 8(11), 123 (2019)
Smith, A.G., Petersen, J., Selvan, R., Rasmussen, C.R.: Segmentation of roots in soil with u-net. Plant Methods 16(1), 1–15 (2020)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: ECCV, pp. 483–499 (2016)
Rahmanzadeh, H., Shojaedini, S.V.: Novel automated method for minirhizotron image analysis: root detection using curvelet transform. IJE Trans. C Asp. 29, 337–346 (2016)
Zare, A., Jiao, C., Glenn, T.: Discriminative multiple instance hyperspectral target characterization. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2342–2354 (2018)
Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89, 31–71 (1997)
Bolton, J., Gader, P., Frigui, H., Torrione, P.: Random set framework for multiple instance learning. Inf. Sci. 181, 2061–2070 (2011)
Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1931–1947 (2006)
Maron, O., Lozano-Pèrez, T.: A framework for multiple-instance learning. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp. 570–576. MIT Press, Cambridge (1998)
Zhang, Q., Goldman, S.: EM-DD: aan improved multiple-instance learning technique. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 1073–1080. MIT Press, Cambridge (2002)
Zare, A., Gader, P.: Pattern recognition using functions of multiple instances. In: Proceedings of International Conference on Pattern Recognition, pp. 1092–1095 (2010)
Jiao, C., Zare, A.: Functions of multiple instances for learning target signatures. IEEE Trans. Geosci. Remote Sens. 53, 4670–4686 (2015)
Shrivastava, A., Pillai, J. K., Patel, V. M., Chellappa, R.: Dictionary-based multiple instance learning. In: 2014 IEEE International Conference on Image Processing, pp. 160–164 (2014)
Shrivastava, A., Patel, V.M., Pillai, J.K., Chellappa, R.: Generalized dictionaries for multiple instance learning. Int. J. Comput. Vis. 114, 288–305 (2015)
Leistner, C., Saffari, A., Bischof, H.: MIForests: multiple-instance learning with randomized trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010)
Andrews, S., Tsochandaridis, I., Hofman, T.: Support vector machines for multiple-instance learning. Adv. Neural. Inf. Process. Syst. 15, 561–568 (2003)
Chang, Y., Yan, L.X., Wu, T., Zhong, S.: Remote sensing image stripe noise removal: from image decomposition perspective. IEEE Trans. Geosci. Remote Sens. 54(12), 7018–7031 (2016)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC Superpixels. EPFL Technical Report (2010)
Broadwater, J., Chellappa, R.: Hybrid detectors for subpixel targets. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1891–1903 (2007)
Kraut, S., Scharf, L.L.: The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans. Signal Process. 47, 2538–2541 (1999)
Kraut, S., Scharf, L.L., McWhorter, L.T.: Adaptive subspace detectors. IEEE Trans. Signal Process. 49, 1–16 (2001)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Schmer, M.R., Vogel, K.P., Mitchell, R.B., Perrin, R.K.: Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 105, 464–469 (2008)
Comas, L.H., Becker, S.R., Cruz, V.M., Byrne, P.F., Dierig, D.A.: Root traits contributing to plant productivity under drought. Front. Plant. Sci. 4, 442 (2013)
de Graaff, M.-A., Six, J., Jastrow, J.D., Schadt, C.W., Wullschleger, S.D.: Variation in root architecture among switchgrass cultivars impacts root decomposition rates. Soil Biol. Biochem. 58, 198–206 (2013)
Berhongaray, G., Janssens, I.A., King, J.S., Ceulemans, R.: Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture. Plant Soil 373, 269–283 (2013)
Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)
Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Acknowledgements
This work was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research Award Number DE-SC0014156 and by the Advanced Research Projects Agency-Energy Award Number DE-AR0000820.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yu, G., Zare, A., Sheng, H. et al. Root identification in minirhizotron imagery with multiple instance learning. Machine Vision and Applications 31, 43 (2020). https://doi.org/10.1007/s00138-020-01088-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-020-01088-z