Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Root identification in minirhizotron imagery with multiple instance learning

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, multiple instance learning (MIL) algorithms to automatically perform root detection and segmentation in minirhizotron imagery using only image-level labels are proposed. Root and soil characteristics vary from location to location, and thus, supervised machine learning approaches that are trained with local data provide the best ability to identify and segment roots in minirhizotron imagery. However, labeling roots for training data (or otherwise) is an extremely tedious and time-consuming task. This paper aims to address this problem by labeling data at the image level (rather than the individual root or root pixel level) and train algorithms to perform individual root pixel level segmentation using MIL strategies. Three MIL methods (multiple instance adaptive cosine coherence estimator, multiple instance support vector machine, multiple instance learning with randomized trees) were applied to root detection and compared to non-MIL approaches. The results show that MIL methods improve root segmentation in challenging minirhizotron imagery and reduce the labeling burden. In our results, multiple instance support vector machine outperformed other methods. The multiple instance adaptive cosine coherence estimator algorithm was a close second with an added advantage that it learned an interpretable root signature which identified the traits used to distinguish roots from soil and did not require parameter selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, K., He, A., Ye, C., Liu, S., Lu, J., Gao, M., Fan, Y., Lu, B., Tian, X., Zhang, Y.: Root morphological traits and spatial distribution under different nitrogen treatments and their relationship with grain yield in super hybrid rice. Sci. Rep. 8, 131 (2018)

    Google Scholar 

  2. Hammer, G.L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., Zinselmeier, C., Paszkiewicz, S., Cooper, M.: Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop. Sci. 49, 299–312 (2009)

    Google Scholar 

  3. Taylor, H.M., Upchurch, D.R., Brown, J.M., Rogers, H.H.: Some methods of root investigations. In: McMichael, B.L., Persson, H. (eds.) Plants Roots and Their Environment, pp. 553–564. Elsevier Science Publisher B. V., New York (1991)

    Google Scholar 

  4. Bates, G.H.: A device for the observation of root growth in the soil. Nature 139, 966–967 (1937)

    Google Scholar 

  5. Rewald, B., Ephrath, J.E.: Minirhizotron techniques. In: Eshel, A., Beeckman, T. (eds.) Plant Roots: The Hidden Half, 4th edn, pp. 421–429. CRC Press, Hoboken (2013)

    Google Scholar 

  6. Waddington, J.: Observation of plant roots in situ. Can. J. Bot. 49, 1850–1852 (1971)

    Google Scholar 

  7. Johnson, M.G., Tingey, D.T., Phillips, D.L., Storm, M.J.: Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 45, 263–289 (2001)

    Google Scholar 

  8. Shojaedini, S.V., Heidari, M.: A new method for root detection in minirhizotron images: hypothesis testing based on entropy-based geometric level set decision. IJE Trans. A Basics 27, 91–100 (2013)

    Google Scholar 

  9. Zeng, G., Birchfield, S.T., Wells, C.E.: Detecting and measuring fine roots in minirhizotron images using matched filtering and local entropy thresholding. Mach. Vis. Appl. 17, 265–278 (2006)

    Google Scholar 

  10. Zeng, G., Birchfield, S.T., Wells, C.E.: Rapid automated detection of roots in minirhizotron images. Mach. Vis. Appl. 21, 309–317 (2010)

    Google Scholar 

  11. Xu, W., Yu, G., Zare, A., Zurweller, B., Rowland, D., Reyes-Cabrera, J., Fritschi, F.B., Matamala, R., Juenger, T.E.: Overcoming Small Minirhizotron Datasets Using Transfer Learning. arXiv preprint arXiv:1903.09344 (2019)

  12. Wang, T., Rostamza, M., Song, Z., Wang, L., McNickle, G., Iyer-Pascuzzi, A.S., Qiu, Z., Jin, J.: SegRoot: a high throughput segmentation method for root image analysis. Comput. Electron. Agric. 154, 25–35 (2018)

    Google Scholar 

  13. Yasrab, R., Atkinson, J.A., Wells, D.M., French, A.P., Pridmore, T.P., Pound, M.P.: RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience 8(11), 123 (2019)

    Google Scholar 

  14. Smith, A.G., Petersen, J., Selvan, R., Rasmussen, C.R.: Segmentation of roots in soil with u-net. Plant Methods 16(1), 1–15 (2020)

    Google Scholar 

  15. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: ECCV, pp. 483–499 (2016)

  16. Rahmanzadeh, H., Shojaedini, S.V.: Novel automated method for minirhizotron image analysis: root detection using curvelet transform. IJE Trans. C Asp. 29, 337–346 (2016)

    Google Scholar 

  17. Zare, A., Jiao, C., Glenn, T.: Discriminative multiple instance hyperspectral target characterization. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2342–2354 (2018)

    Google Scholar 

  18. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89, 31–71 (1997)

    MATH  Google Scholar 

  19. Bolton, J., Gader, P., Frigui, H., Torrione, P.: Random set framework for multiple instance learning. Inf. Sci. 181, 2061–2070 (2011)

    MathSciNet  Google Scholar 

  20. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1931–1947 (2006)

    Google Scholar 

  21. Maron, O., Lozano-Pèrez, T.: A framework for multiple-instance learning. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp. 570–576. MIT Press, Cambridge (1998)

    Google Scholar 

  22. Zhang, Q., Goldman, S.: EM-DD: aan improved multiple-instance learning technique. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 1073–1080. MIT Press, Cambridge (2002)

    Google Scholar 

  23. Zare, A., Gader, P.: Pattern recognition using functions of multiple instances. In: Proceedings of International Conference on Pattern Recognition, pp. 1092–1095 (2010)

  24. Jiao, C., Zare, A.: Functions of multiple instances for learning target signatures. IEEE Trans. Geosci. Remote Sens. 53, 4670–4686 (2015)

    Google Scholar 

  25. Shrivastava, A., Pillai, J. K., Patel, V. M., Chellappa, R.: Dictionary-based multiple instance learning. In: 2014 IEEE International Conference on Image Processing, pp. 160–164 (2014)

  26. Shrivastava, A., Patel, V.M., Pillai, J.K., Chellappa, R.: Generalized dictionaries for multiple instance learning. Int. J. Comput. Vis. 114, 288–305 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Leistner, C., Saffari, A., Bischof, H.: MIForests: multiple-instance learning with randomized trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010)

    Google Scholar 

  28. Andrews, S., Tsochandaridis, I., Hofman, T.: Support vector machines for multiple-instance learning. Adv. Neural. Inf. Process. Syst. 15, 561–568 (2003)

    Google Scholar 

  29. Chang, Y., Yan, L.X., Wu, T., Zhong, S.: Remote sensing image stripe noise removal: from image decomposition perspective. IEEE Trans. Geosci. Remote Sens. 54(12), 7018–7031 (2016)

    Google Scholar 

  30. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC Superpixels. EPFL Technical Report (2010)

  31. Broadwater, J., Chellappa, R.: Hybrid detectors for subpixel targets. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1891–1903 (2007)

    Google Scholar 

  32. Kraut, S., Scharf, L.L.: The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans. Signal Process. 47, 2538–2541 (1999)

    Google Scholar 

  33. Kraut, S., Scharf, L.L., McWhorter, L.T.: Adaptive subspace detectors. IEEE Trans. Signal Process. 49, 1–16 (2001)

    Google Scholar 

  34. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  35. Schmer, M.R., Vogel, K.P., Mitchell, R.B., Perrin, R.K.: Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA 105, 464–469 (2008)

    Google Scholar 

  36. Comas, L.H., Becker, S.R., Cruz, V.M., Byrne, P.F., Dierig, D.A.: Root traits contributing to plant productivity under drought. Front. Plant. Sci. 4, 442 (2013)

    Google Scholar 

  37. de Graaff, M.-A., Six, J., Jastrow, J.D., Schadt, C.W., Wullschleger, S.D.: Variation in root architecture among switchgrass cultivars impacts root decomposition rates. Soil Biol. Biochem. 58, 198–206 (2013)

    Google Scholar 

  38. Berhongaray, G., Janssens, I.A., King, J.S., Ceulemans, R.: Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture. Plant Soil 373, 269–283 (2013)

    Google Scholar 

  39. Powers, D.M.: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)

    Google Scholar 

  40. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Google Scholar 

  41. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    MATH  Google Scholar 

  42. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research Award Number DE-SC0014156 and by the Advanced Research Projects Agency-Energy Award Number DE-AR0000820.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohao Yu or Alina Zare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Zare, A., Sheng, H. et al. Root identification in minirhizotron imagery with multiple instance learning. Machine Vision and Applications 31, 43 (2020). https://doi.org/10.1007/s00138-020-01088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01088-z

Keywords

Navigation