Abstract
Visual object tracking is a key factor for unmanned aerial vehicles. In this paper, we propose a robust and effective visual object tracking method with an appearance model based on the locally adaptive regression kernel. The proposed appearance model encodes the geometric structure of the target. The tracking problem is formulated as two binary classifiers via two support vector machines (SVMs) with online model update. The backward tracking which tracks the target in reverse of time is utilized to evaluate the accuracy and robustness of the two SVMs. The final locations are adaptively fused based on the results of the forward tracking and backward tracking validation. Several state-of-the-art tracking algorithms are evaluated on large-scale benchmark datasets which include challenging factors such as heavy occlusion, pose variation, illumination variation and motion blur. Experimental results demonstrate that our method achieves appealing performance.
Similar content being viewed by others
References
Wu, Yi, Lim, Jongwoo, Yang, Ming-Hsuan: Object tracking benchmark. IEEE TPAMI 37(9), 1834–1848 (2015)
Mondragon, I.F., Campoy, P., Olivares-Mendez, M.A., Martinez, C.: 3D object following based on visual information for unmanned aerial vehicles. In: IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, pp. 1–7 (2011)
Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying UAV. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, September, pp. 4929–4934 (2011)
Kendall, A., Salvapantula, N., Stol, K.: On-board object tracking control of a quadcopter with monocular vision. In : International Conference on Unmanned Aircraft Systems, pp. 404–411 (2014)
Cao, X., Wu, C., Lan, J., Yan, P., Li, X.: Vehicle detection and motion analysis in low-altitude airborne video under urban environment. IEEE Trans. Circuits Syst. Video Technol. 21(10), 1522–1533 (2011)
Wainwright, A., Ford, J.: Fusion of morphological images for airborne target detection. In: 15th International Conference on Information Fusion, pp. 1180–1187 (2012)
Gandhi, T., Yang, M.-T., Kasturi, R., Camps, O., Coraor, L., Mc-Candless, J.: Detection of obstacles in the flight path of an aircraft. IEEE CVPR 2, 304–311 (2000)
Carnie, R., Walker, R., Corke, P.: Image processing algorithms for UAV sense and avoid. In: ICRA, pp. 2848–2853 (2006)
Lai, J.S., Ford, J.J., Mejias, L., OShea, P.J., Walker, R.A.: See and avoid using on-board computer vision. In: Angelov, P. (ed.) Sense and Avoid in UAS, Research and Applications, pp. 265–294. Wiley, Hoboken (2012)
Dey, D., Geyer, C., Singh, S., Digioia, M.: Passive, long-range detection of aircraft: towards a field deployable sense and avoid system. In: Zelinsky, A. (ed.) Field and Service Robotics, Springer Tracts in Advanced Robotics Series, vol. 62, pp. 113–123. Springer, Berlin (2010)
Mccandless, J.W.: Detection of aircraft in video sequences using a predictive optical flow algorithm. Opt. Eng. 38, 523–530 (1999)
Mian, A.: Realtime Visual Tracking of Aircrafts, Digital Image Computing: Techniques and Applications, pp. 351–356. Massey University, Auckland (2008)
Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: ECCV, pp. 188–203 (2014)
Hong, Z., Chen, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.: Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: IEEE CVPR, pp. 749–758 (2015)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE TPAMI 34(7), 1409–1422 (2011)
Wang, Y., Shi, W., Wu, S.: Robust UAV-based tracking using hybrid classifiers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp. 2129–2137 (2017)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 13 (2006)
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE TPAMI 36(7), 1442–1468 (2014)
Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77(1), 125–141 (2008)
Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: IEEE CVPR, pp. 1822–1829 (2012)
Gong, C., Fu, K., Loza, A., Wu, Q., Liu, J., Yang, J.: PageRank tracker: from ranking to tracking. IEEE Transactions on Cybernetics 44, 882–893 (2013)
Liu, F., Gong, C., Zhou, T., Fu, K., Yang, J.: Visual tracking via nonnegative multiple coding. IEEE Trans. Multimed. 19, 2680–2691 (2017)
Liu, F., Zhou, T., Gong, C., Fu, K., Bai, L., Yang, J.: Inverse nonnegative local coordinate factorization for visual tracking. IEEE Trans. Circuits Syst. Video Technol. 28, 1752–1764 (2017)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVA, pp. 6.1–6.10 (2006)
Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S.L., Torr, P.H.S.: Struck: structured output tracking with kernels. IEEE TPAMI 38(10), 2096–2109 (2016)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE CVPR, pp. 2544–2550 (2010)
Henriques, J., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV, pp. 702–715 (2012)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE TPAMI 37, 583–596 (2015)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: IEEE ECCVW, pp. 254–265 (2014)
van de Weijer, J., Schmid, C., Verbeek, J.J., Larlus, D.: Learning color names for real-world applications. IEEE TIP 18(7), 1512–1524 (2009)
Dalal, N., Triggs, B.: Histogram of oriented gradietns for human detection. In: IEEE CVPR, pp. 886–893 (2005)
Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC (2014)
Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: IEEE ICCV, pp. 4310–4318 (2015)
Liu, F., Gong, C., Huang, X., Zhou, T., Yang, J., Tao, D.: Robust visual tracking revisited: from correlation filter to template matching. IEEE Trans. Image Process. 27(6), 2777–2790 (2018)
Fu, C., Carrio, A., Olivares-Mendez, M., Suarez-Fernandez, R., Campoy, P, Robust real-time vision-based aircraft tracking from unmanned aerial vehicles. In: IEEE ICRA, pp. 5441–5446 (2014)
Nussberger, A., Grabner, H., Van Gool, L.: Aerial object tracking from an airborne platform. In: International Conference on Unmanned Aircraft Systems, pp. 1284–1293 (2014)
Qadir, A., Neubert, J., Semke, W., Schultz, R.: Chap: On-Board Visual Tracking With Unmanned Aircraft System (UAS). Infotech@Aerospace Conferences, AIAA (2011)
Pestana, J., Sanchez-Lopez, J., Campoy, P., Saripalli, S.: Vision based GPS-denied object tracking and following for unmanned aerial vehicles. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 1–6 (2013)
Lim, H., Sinha, S.N.: Monocular localization of a moving person onboard a quadrotor MAV. In: IEEE ICRA, pp. 2182–2189 (2015)
Mueller, M., Sharma, G., Smith, N., Ghanem, B.: Persistent aerial tracking system for UAVs. In: IEEE IROS, pp. 1562–1569 (2016)
Cao, X., Jiang, X., Li, X., Yan, P.: Correlation-based tracking of multiple targets with hierarchical layered structure. IEEE Trans. Cybern. 48(1), 90–102 (2018)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: IEEE CVPR, pp. 2411–2418 (2013)
Kristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Cehovin, L., Nebehay, G., Fernandez, G., Vojir, T., Gatt, A., Khajenezhad, A.: The VOT2013 challenge results. In: CVPRW, pp. 98–111 (2013)
Liang, Pengpeng, Blasch, Erik, Ling, Haibin: Encoding color information for visual tracking: algorithms and benchmark. IEEE TIP 24(12), 5630–5644 (2015)
Collins, R., Zhou, X., The, S.K.: The PASCAL VOC2010 results (2010)
Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: ECCV, pp. 445–461 (2016)
Seo, H., Milanfar, P.: Training-free, generic object detection using locally adaptive regression kernels. IEEE TPAMI 32(9), 1688–1704 (2010)
Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 1–27 (2009)
Seo, H.J., Milanfar, P.: Action recognition from one example. IEEE TPAMI 33(5), 867–882 (2011)
Seo, H.J., Milanfar, P.: Face verification using the lark representation. IEEE Trans. Inf. Forensics Secur. 6(4), 1275–1286 (2011)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge 2010 (VOC2010) results (2010)
Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: CVPR (2011)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and K-selection. In: CVPR (2011)
Babenko, Boris, Yang, Ming-Hsuan, Belongie, Serge: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Zhong, W., Lu, H., Yang, M.-H.: Robust object tracking via sparsity-based collaborative model. In: CVPR (2012)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: ICCV (2011)
Wang, Z., Vucetic, S.: Online training on a budget of support vector machines using twin prototypes. Stat. Anal. Data Min. 3(3), 149–169 (2010)
Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. IEEE International Workshop on PETS, pp. 17–24 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by a National Institutes of Health (NIH)/National Cancer Institute (NCI) R01 Grant (#1R01CA193603).
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Wang, Y., Shi, W. & Wu, S. Robust UAV-based tracking using hybrid classifiers. Machine Vision and Applications 30, 125–137 (2019). https://doi.org/10.1007/s00138-018-0981-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-018-0981-4