Abstract
Quantification of coronary artery disease (CAD) from cardiac computed tomography angiography (CTA) is important both structurally (lumen area stenosis) and functionally (combined with computational fluid dynamics to determine fractional flow reserve) for assessment of ischemic stenosis and to guide treatment. Hence, it is important to have CTA image processing technique for segmentation and reconstruction of coronary arteries. In this study, we developed segmentation and reconstruction techniques, based on fast marching and Runge–Kutta methods for centerline extraction, and surface mesh generation. The accuracy of the reconstructed models was validated with direct intravascular ultrasound (IVUS) measurements in 1950 cross sections within 4 arteries. High correlation was found between CTA and IVUS measurements for lumen areas (\(r=0.993\), \(p<0.001\)). Receiver-operating characteristic (ROC) curves showed excellent accuracies for detection of different cutoff values of cross-lumen area (5 \(\text {mm}^2\), 6 \(\text {mm}^2\), 7 \(\text {mm}^2\) and 8 \(\text {mm}^2\), all ROC values >0.99). We conclude that our technique has sufficient accuracy for quantifying coronary lumen area. The accuracy and efficiency demonstrated that our approach can facilitate quantitative evaluation of coronary stenosis and potentially help in real-time assessment of CAD.
Similar content being viewed by others
References
Kirişli, H.A., Schaap, M., Metz, C.T., Dharampal, A.S., Meijboom, W.B., Papadopoulou, S.L., et al.: Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med. Image Anal. 17(8), 859–876 (2013)
Caussin, C., Larchez, C., Ghostine, S., Pesenti-Rossi, D., Daoud, B., Habis, M., et al.: Comparison of coronary minimal lumen area quantification by sixty-four-slice computed tomography versus intravascular ultrasound for intermediate stenosis. Am. J. Cardiol. 98(7), 871–876 (2006)
Nieman, K., Cademartiri, F., Lemos, P.A., Raaijmakers, R., Pattynama, P.M., de Feyter, P.J.: Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106, 2051–2054 (2002)
Samuels, O.B., Joseph, G.J., Lynn, M.J., Smith, H.A., Chimowitz, M.I.: A standardized method for measuring intracranial arterial stenosis. Am. J. Neuroradiol. 21, 643–646 (2000)
Zhang, J.M., Zhong, L., Su, B., Wan, M., Yap, J.S., Tham, J.P.: Perspective on cfd studies of coronary artery disease lesions and hemodynamics: a review. Int. J. Numer. Method Biomed. Eng. 30, 659–680 (2014)
Arbab-Zadeh, A., Hoe, J.: Quantification of coronary arterial stenoses by multidetector ct angiography in comparison with conventional angiography: methods, caveats, and implications. JACC. Cardiovasc. Imaging 4, 191–202 (2011)
Nalcioglu, O., Roeck, W.W., Reese, T., Qu, L.Z., Tobis, J.M., Henry, W.L.: Background subtraction algorithms for videodensitometric quantification of coronary stenosis. Mach. Vis. Appl. 1(3), 155–162 (1988)
Topol, E.J., Nissen, S.E.: Our preoccupation with coronary luminology the dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92, 2333–2342 (1995)
Kruk, M., Wardziak, Ł., Mintz, G.S., Achenbach, S., Pręgowski, J., Rużyłło, W., et al.: Accuracy of coronary computed tomography angiography vs intravascular ultrasound for evaluation of vessel area. J. Cardiovasc. Comput. Tomogr. 8, 141–148 (2014)
Marquering, H.A., Dijkstra, J., de Koning, P.J., Stoel, B.C., Reiber, J.H.: Towards quantitative analysis of coronary cta. Int. J. Cardiovasc. Imaging 21, 73–84 (2005)
Luo, T., Wischgoll, T., Kwon Koo, B., Huo, Y., Kassab, G.S., Secomb, T.W.: IVUS validation of patient coronary artery lumen area obtained from ct images. PloS one 9, e86949 (2014)
Behrens, T., Rohr, K., Stiehl, H.S.: Robust segmentation of tubular structures in 3-d medical images by parametric object detection and tracking. IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 33(4), 554–561 (2003)
Angelova, D., Mihaylova, L.: Contour segmentation in 2D ultrasound medical images with particle filtering. Mach. Vis. Appl. 22(3), 551–561 (2011)
Zhang, L., Peng, X., Li, G., Li, H.: A novel active contour model for image segmentation using local and global region-based information. Mach. Vis. Appl. 28(1–2), 75–89 (2017)
Tian, Y., Duan, F., Zhou, M., Wu, Z.: Active contour model combining region and edge information. Mach. Vis. Appl. 24(1), 1–15 (2013)
Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3d images. Comput. Vis. Image Und. 80(2), 130–171 (2000)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI’98, pp. 130–137. Springer, Berlin (1998)
Almasi, D., Ghandchi, M.: Autom. Vessel Segm. Based Reg. Grow. 2(2):899–902 (2015)
Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph 3, 530–548 (2007)
Schaap, M., Metz, C.T., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)
Yang, G., Kitslaar, P., Frenay, M., Broersen, A., Boogers, M.J., Bax, J.J., et al.: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Cardiovasc. Imaging 28(4), 921–933 (2012)
Metz, C.T.: Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach. Med. Phys. 36(12), 5568–5579 (2009)
Van Uitert, R., Bitter, I.: Subvoxel precise skeletons of volumetric data based on fast marching methods. Med. Phys. 34, 627–638 (2007)
Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., Walsum, T.V., Viergever, M.A.: Model-based quantitation of 3-d magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)
Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)
Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 1. Teubner, Stuttgart (1998)
Tasdizen, T., Whitaker, R., Marc, R., Jones, B.: Enhancement of cell boundaries in transmission electron microscopy images. IEEE Int. Conf. Image Process. 2, 129–132 (2005)
Manniesing, R., Niessen, W.: Multiscale vessel enhancing diffusion in ct angiography noise filtering. In: Information Processing in Medical Imaging, pp. 138–149. Springer, Berlin (2005)
Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion: a scale space representation of vessel structures. Med. Image Anal. 10(6), 815–825 (2006)
Cui, H., Wang, D., Min, W., Zhang, J.M., Zhao, X., Ru, S.T., et al.: Coronary artery segmentation via hessian filter and curve-skeleton extraction. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), pp. 93-98 (2014)
Cui, H., Wang, D., Min, W., Zhang, J.M., Zhao, X., Ru, S.T.: Fast marching and Runge-Kutta based method for centreline extraction of right coronary artery in human patients. Cardiovasc. Eng. Technol. 7(2), 159 (2016)
Cai, W., Harris, G.J., Yoshida, H.: Computation of vesselness in CTA images for fast and interactive vessel segmentation. Int. J. Image Gr. 7, 159–176 (2007)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1996)
Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)
Canero, C., Radeva, P.: Vesselness enhancement diffusion. Pattern Recognit. Lett. 24(16), 3141–3151 (2003)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grants 61471297, 61771397 and 61801393, in part by the China Postdoctoral Science Foundation under Grant 2017M623245, in part by the Fundamental Research Funds for the Central Universities under Grant 3102018zy031, and in part by the National Medical Research Council (NMRC/BnB/1007/2015).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cui, H., Xia, Y., Zhang, Y. et al. Validation of right coronary artery lumen area from cardiac computed tomography against intravascular ultrasound. Machine Vision and Applications 29, 1287–1298 (2018). https://doi.org/10.1007/s00138-018-0978-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-018-0978-z