Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An experimental comparison of superpixels detection methods for contour detection

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Recently, many superpixels detection methods have been proposed and used in various applications. We are interested in which method is more suitable for the application of contour detection. In this paper, superpixels are evaluated on BSDS500 dataset in two different aspects. On the one hand, contours are directly provided by the boundaries of superpixels and experiments show that better results could be achieved by the superpixels with irregular shapes than those with regular shapes and similar sizes. On the other hand, contours are further detected from those candidate positions which are confirmed by the boundaries of superpixels through the operation of dilation. In this situation, experiments show that competitive results could also be achieved by some superpixels with regular shapes and similar sizes. Besides, we propose a superpixels detection method called watershed-based graph (WG), by which superpixels with irregular shapes could be produced. Firstly, a graph is constructed from an over-segmented map which is achieved through a watershed algorithm. Then, to get the desired superpixels, the graph is segmented by merging neighbor segments in an order of decreasing similarity. Experiments show that higher efficiency could be achieved by WG with a moderate worse contour quality than its original graph-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alex, L., Adrian, S., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Kaleem, S.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  2. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  3. Tighe, J., Lazebnik, S.: Superparsing: scalable nonparametric image parsing with superpixels. Int. J. Comput. Vis. 101(2), 352–365 (2010)

    MathSciNet  Google Scholar 

  4. Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2011–2018 (2013)

  5. Shen, J., Du, Y., Li, X.: Interactive segmentation using constrained laplacian optimization. IEEE Trans. Circuits Syst. Video Technol. 24(7), 1088–1100 (2014)

    Article  Google Scholar 

  6. Dong, X., Shen, J., Shao, L., Gool, L.V.: Sub-Markov random walk for image segmentation. IEEE Trans. Image Process. 25(2), 516–527 (2016). https://doi.org/10.1109/TIP.2015.2505184

    Article  MathSciNet  Google Scholar 

  7. Wang, W., Shen, J., Li, X., Porikli, F.: Robust video object cosegmentation. IEEE Trans. Image Process. 24(10), 3137–3148 (2015). https://doi.org/10.1109/TIP.2015.2438550

    Article  MathSciNet  Google Scholar 

  8. Dong, X., Shen, J., Shao, L.: Hierarchical superpixel-to-pixel dense matching. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2518–2526 (2017). https://doi.org/10.1109/TCSVT.2016.2595321

    Article  Google Scholar 

  9. Wang, W., Shen, J., Shao, L.: Consistent video saliency using local gradient flow optimization and global refinement. IEEE Trans. Image Process. 24(11), 4185–4196 (2015)

    Article  MathSciNet  Google Scholar 

  10. Wu, C.W., Zhao, H.Q., Cao, S.X., Xiang, K., Wang, X.Y.: Attention shift-based multiple saliency object segmentation. J. Electron. Imaging 25(5), 053,009–053,009 (2016). https://doi.org/10.1117/1.JEI.25.5.053009

    Article  Google Scholar 

  11. Han, J., Cheng, G., Li, Z., Zhang, D.: A unified metric learning-based framework for co-saliency detection. IEEE Trans. Circuits Syst. Video Technol. PP(99), 1 (2017). https://doi.org/10.1109/TCSVT.2017.2706264

    Article  Google Scholar 

  12. Zhang, D., Meng, D., Han, J.: Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 865–878 (2017). https://doi.org/10.1109/TPAMI.2016.2567393

    Article  Google Scholar 

  13. Yao, X., Han, J., Zhang, D., Nie, F.: Revisiting co-saliency detection: a novel approach based on two-stage multi-view spectral rotation co-clustering. IEEE Trans. Image Process. 26(7), 3196–3209 (2017). https://doi.org/10.1109/TIP.2017.2694222

    Article  MathSciNet  Google Scholar 

  14. Zhang, D., Han, J., Jiang, L., Ye, S., Chang, X.: Revealing event saliency in unconstrained video collection. IEEE Trans. Image Process. 26(4), 1746–1758 (2017). https://doi.org/10.1109/TIP.2017.2658957

    Article  MathSciNet  Google Scholar 

  15. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: Computer Vision and Pattern Recognition (2015)

  16. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  17. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  18. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Moore, A.P., Prince, S.J.D., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices, pp. 1–8 (2008)

  21. Moore, A.P., Prince, S.J.D., Warrell, J.: Lattice cut—constructing superpixels using layer constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2124 (2010)

  22. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Computer Vision—ECCV 2010—European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, pp. 211–224 (2010)

  23. Zhang, Y., Hartley, R., Mashford, J., Burn, S.: Superpixels via pseudo-boolean optimization. In: International Conference on Computer Vision, pp. 1387–1394 (2011)

  24. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2104 (2011)

  25. Bergh, M.V.D., Boix, X., Roig, G., Gool, L.V.: Seeds: Superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111(3), 298–314 (2012)

    Article  MathSciNet  Google Scholar 

  26. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  27. Neubert, P., Protzel, P.: Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms. In: International Conference on Pattern Recognition, pp. 996–1001 (2014)

  28. Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014). https://doi.org/10.1109/TIP.2014.2302892

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J., Hao, X., Liang, Z., Liu, Y., Wang, W., Shao, L.: Real-time superpixel segmentation by dbscan clustering algorithm. IEEE Trans. Image Process. 25(12), 5933–5942 (2016). https://doi.org/10.1109/TIP.2016.2616302

    Article  MathSciNet  Google Scholar 

  30. Peng, J., Shen, J., Yao, A., Li, X.: Superpixel optimization using higher order energy. IEEE Trans. Circuits Syst. Video Technol. 26(5), 917–927 (2016). https://doi.org/10.1109/TCSVT.2015.2430631

    Article  Google Scholar 

  31. Liang, Y., Shen, J., Dong, X., Sun, H., Li, X.: Video supervoxels using partially absorbing random walks. IEEE Trans. Circuits Syst. Video Technol. 26(5), 928–938 (2016). https://doi.org/10.1109/TCSVT.2015.2406232

    Article  Google Scholar 

  32. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  33. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  34. Deng, Y., Manjunath, B.S., Shin, H.: Color image segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (1999)

  35. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41(1–2), 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  37. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings, vol. 2, pp. 416–423 (2001)

  38. Wang, X.Y., Wu, C.W., Xiang, K., Chen, W.: Efficient local and global contour detection based on superpixels. J. Vis. Commun. Image Represent. 48, 77–87 (2017). https://doi.org/10.1016/j.jvcir.2017.06.005

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51521064) and by the innovation fund of Shanghai Academy of Spaceflight Technology (Grant No. SAST2015086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Wei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Wu, CW., Xiang, K. et al. An experimental comparison of superpixels detection methods for contour detection. Machine Vision and Applications 29, 677–687 (2018). https://doi.org/10.1007/s00138-018-0927-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0927-x

Keywords

Navigation