Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multi-gait recognition using hypergraph partition

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Gait recognition is a challenging problem in computer vision, especially when multi-persons walk together, called as multi-gait recognition. Multi-gait recognition includes two aspects: participant segmentation and participant recognition. In this paper, we propose to segment each participant by hypergraph partition and recognize each participant by multi-linear canonical correlation analysis algorithm (UMCCA). Firstly, raw pixel areas are obtained by grid, and each pixel area is taken as a hypergraph vertex. Then HOG-based detection and tracking technology is used to calculate the weight of each hyperedge. After segmentation, UMCCA is used to extract gait features. Finally, identity of multi-gait is recognized. The experimental results demonstrate that our proposed method achieves good performance on multi-gait dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choudhury, S.D., Tjahjadi, T.: Gait recognition based on shape and motion analysis of silhouette contours. Comput. Vis. Image Underst. 117, 1770–1785 (2013)

    Article  Google Scholar 

  2. Weng, W.G., Chen, T., Yuan, H.Y.: Cellular automaton simulation of pedestrian counter flow with different walk velocities. Phys. Rev. E 74, 036102_1–.036102_7 (2006)

    Article  Google Scholar 

  3. Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior comparison with aircraft evacuation data. Phys. A 324, 689–697 (2003)

    Article  MATH  Google Scholar 

  4. Huo, F., Song, W., Lv, W., Liew, K.M.: Analyzing pedestrian merging flow on a floorstair interface using an extended lattice gas model. Commun. Theor. Phys. 90(5), 501–510 (2014)

    Google Scholar 

  5. Wang, Z., Song, B., Qin, Y., Jia, L.: Team-moving effect in bi-direction pedestrian flow. Phys. A 391, 3119–3128 (2012)

    Article  Google Scholar 

  6. Brooks, G., Krishnamurthy, P., Khorrami, F.: A multi-gait approach for humanoid navigation in cluttered environments. In: Proceedings of CCDC (2014)

  7. Guan, R., Liu, J., Liu, J.: Fusion algorithm for multi-gait of hexapod bionic rescue robot. Adv. Mater. Res. 433–440, 3033–3037 (2012)

    Article  Google Scholar 

  8. Reis, M., Yu, X., Maheshwari, N., Iida, F.: Morphological computation of multi-gaited robot locomotion based on free vibration. Artif. Life 19(1), 97–114 (2013)

    Article  Google Scholar 

  9. Guldogan, M.B., Lindgren, D., Gustafsson, F., Habberstad, H., Orguner, U.: Multi-target tracking with PHD filter using Doppler-only measurements. Digit. Signal Process. 27, 1–11 (2014)

    Article  Google Scholar 

  10. Kim, S., Kwak, S., Feyereisl, J., Han, B.: Online multi-target tracking by large margin structured learning. In: ACCV (2012)

  11. Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

  12. Wu, B., Nevatia, R.: Detection and tracking of multiple partially occluded humans by bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75, 247–266 (2007)

    Article  Google Scholar 

  13. Huang, Y., et al.: Unsupervised image categorization by hypergraph partition. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1266–1273 (2011)

    Article  Google Scholar 

  14. Lowe, D.: Distinctive image features from scale-incariant key points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: Proceedings of ECCV (2006)

  16. Yu, J., Rui, Y., Tao, D.: Click prediction for web image reranking using multimodal sparse coding. IEEE Trans. Image Process. 23(5), 2019–2031 (2014)

    Article  MathSciNet  Google Scholar 

  17. Su, J., Dong, L., Ren, P., Hancock, E.R.: Hypergraph matching based on marginalized constrained compatibility. In: Proceedings of ICPR (2013)

  18. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: Proceedings of CVPR (2008)

  19. Roy, A., Sural, S., Mukherje, J.: Gait recognition using pose kinematics and pose energy image. Signal Process. 92(3), 780–792 (2012)

    Article  Google Scholar 

  20. Jeong, S., Cho, J.: A framework for online gait recognition based on multilinear tensor analysis. J. Supercomput. 65, 106–121 (2013)

    Article  Google Scholar 

  21. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: Multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19(1), 18–39 (2008)

    Article  Google Scholar 

  22. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1714 (2007)

    Article  Google Scholar 

  23. Hu, H.: Multiview gait recognition based on patch distribution features and uncorrelated multilinear sparse local discriminant canonical correlation analysis. IEEE Trans. Circuits Syst. Video Technol. 24(4), 617–630 (2014)

    Article  Google Scholar 

  24. Liu, S., Zhang, Y., Liu, K., Li, Y.: Facial expression recognition under partial occlusion based on gabor multi-orientation features fusion and local gabor binary pattern histogram sequence. In: Proceedings of Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (2013)

  25. Hu, H.: Enhanced gabor feature based classification using a regularized locally tensor discriminant model for multiview gait recognition. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1274–1286 (2013)

    Article  Google Scholar 

  26. Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit. Lett. 30, 977–984 (2009)

    Article  Google Scholar 

  27. Weinland, D., Ozuysal, M., Fua, P.: Making action recognition robust to occlusions and viewpoint changes. In: ECCV (2010)

  28. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: Proceedings of International Conference on Machine Learning (2006)

  29. Zhou, D., Huang, J., Schokopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Proceedings of Conference Advances in Neural Information Processing Systems (2007)

  30. Possegger, H., Mauthner, T., Roth, P.M., Bischof, H.: Occlusion geodesics for online multi-object tracking. In: Proceedings of CVPR (2014)

  31. Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-camera people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 267–282 (2008)

    Article  Google Scholar 

  32. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Proceedings of European Conference Computer Vision (2006)

  33. Satpathy, A., Jiang, X., Eng, H.L.: Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Trans. Image Process. 23(1), 287–297 (2014)

    Article  MathSciNet  Google Scholar 

  34. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2, 83–87 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gold, S., Rangarajan, A.: Softmax to softassign: neural network algorithms for combinatorial optimization. J. Artif. Neural Netw. 2(4), 381–399 (1995)

    Google Scholar 

  36. Huang, C., Li, Y., Nevatia, R.: Multiple target tracking by learning-based hierarchical association of detection responses. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 898–910 (2013)

    Article  Google Scholar 

  37. Berclaz, J., Fleuret, F., Tretken, E., Fua, P.: Multiple object tracking using K-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

    Article  Google Scholar 

  38. Jin, Z., Yang, J.Y., Hu, Z.S., Lou, Z.: Face recognition based on the uncorrelated discriminant transformation. Pattern Recognit. 34(7), 14051416 (2001)

    Article  MATH  Google Scholar 

  39. Liu, N., Lu, J., Tan, Y.P.: Joint subspace learning for view-invariant gait recognition. IEEE Signal Process. Lett. 18, 431–434 (2011)

    Article  Google Scholar 

  40. Jeong, S., Cho, J.: A framework for online gait recognition based on multilinear tensor analysis. J. Supercomput. 65, 106121 (2013)

    Google Scholar 

  41. Lu, H., et al.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19(1), 18–38 (2008)

    Article  Google Scholar 

  42. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rodrequez, J.: On the Laplacian spectrum and walk-regular hypergraphs. Linear Multilinear Algebra 51, 285–297 (2003)

    Article  MathSciNet  Google Scholar 

  44. Andriluka, M., et al.: People-tracking-by detection and people-detection-by-tracking. In: CVPR (2008)

  45. Breitenstein, M.D., et al.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 208–219 (2011)

    Article  Google Scholar 

  46. Shu1, G., et al.: Part-based multiple-person tracking with partial occlusion handling. In: CVPR (2012)

  47. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. In: PAMI (2010)

  48. Felzenszwalb, P., Girshick, R., McAllester, D.: Cascade object detection with deformable part models. In: CVPR, IEEE (2010)

  49. Pedersoli, M., Vedaldi, A., Gonzalez, J.: A coarse-to-fine approach for fast deformable object detection. In: CVPR, IEEE (2011)

  50. Kokkinos, I.: Rapid deformable object detection using dual-tree branch-and-bound. In: NIPS (2011)

  51. Dubout, C., Fleuret, F.: Exact acceleration of linear object detectors. In: ECCV, Springer (2012)

  52. Yan, J., Lei, Z., Wen, L., Li, S.Z.: The fastest deformable part model for object detection. In: Proceedings of CVPR (2014)

  53. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  54. Liu, L.-F., Jia, W., Zhu, Y.-H.: Survey of gait recognition. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. Lecture Notes in Computer Science, vol. 5755, pp, 652–659. Springer, Berlin, Heidelberg (2009)

  55. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–219 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xu, J. & Weng, J. Multi-gait recognition using hypergraph partition. Machine Vision and Applications 28, 117–127 (2017). https://doi.org/10.1007/s00138-016-0810-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-016-0810-6

Keywords

Navigation