Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Pose-invariant vehicle identification in aerial electro-optical imagery

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In digital airborne electro-optical imagery, the identification of objects, particularly vehicles, has an important role in wide-area search and surveillance applications. We propose an identification and pose estimation approach based on maximising the correlation of features in an image with projections of 3D models. It has been applied to imagery collected in a controlled laboratory environment as well as imagery collected during airborne field trials. The results show good discrimination between different vehicle classes, although performance is degraded by vehicle camouflage and low-resolution imagery. Our approach is scalable, in terms of database size and feature sets, and computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Although a Land Rover is not a generic vehicle class, a certain class of military vehicles consists of a majority of Land Rovers and hence the class label of the same name.

References

  1. 3D CAD Browser. http://www.3dcadbrowser.com

  2. Blender. http://www.blender.org

  3. Text of ISO/IEC 15 938-3 Multimedia Content Description Inter-facePart 3: Visual. Final Committee Draft (2001)

  4. Arie-Nachimson, M., Basri, R.: Constructing implicit 3D shape models for pose estimation. In: ICCV (2009)

  5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th annual workshop on computational learning theory, COLT ’92, pp. 144–152. ACM (1992)

  6. Chan, T.F., Vese, L.A.: Active contours without edges. Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

    MATH  Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. CVPR 1, 886–893 (2005)

    Google Scholar 

  9. Dork, G., Schmid, C.: Selection of scale-invariant parts for object class recognition. ICCV 1, 634 (2003)

    Google Scholar 

  10. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  11. Fehlmann, S., Booth, D., Janney, P., Pontecorvo, C., Aquilina, P., Scoleri, T., Redding, N., Christie, R.: Application of detection and recognition algorithms to persistent wide area surveillance. In: Digital Image Computing: Techniques and Applications (DICTA), 2013 international conference on, pp. 1–8 (2013)

  12. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR, pp. 1–8 (2008)

  13. Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous object recognition and segmentation by image exploration. Toward Category-Level Object Recognit. LNCS 4170, 145–169 (2006)

    Article  Google Scholar 

  14. Freeman, W.T.: Steerable filters and local analysis of image structure. Ph.D. thesis (1992)

  15. Heisele, B., Kim, G., Meyer, A.: Object recognition with 3D models. In: BMVC (2009)

  16. Jones, R., Ristic, B., Redding, N., Booth, D.M.: Moving target indication and tracking from moving sensors. In: DICTA, pp. 46–46 (2005)

  17. Jonsson, K., Kittler, J., Li, Y., Matas, J.: Support vector machines for face authentication. Image Vis. Comput. 20(56), 369–375 (2002)

    Article  Google Scholar 

  18. Kraay, A., Pouliot, M., Wallace, W.: Test and Evaluation of the Man–Machine Interface Between the Apache Longbow and an Unmanned Aerial Vehicle. Defense Technical Information Center (2000)

  19. Liebelt, J., Schmid, C.: Multi-view object class detection with a 3d geometric model. In: CVPR, pp. 1688–1695 (2010)

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. NATO: NATO Intelligence, Surveillance, and Reconnaissance Interoperability Architecture (NIIA). http://www.nato.int/structur/ac/224/standard/AEDP2/AEDP02.htm (2005)

  23. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MATH  Google Scholar 

  24. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  25. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: ECCV, pp. 71–84 (2004)

  26. Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4(1), e27 (2008)

    Article  MathSciNet  Google Scholar 

  27. Punchcard. http://www.punchcard.com.au (2013)

  28. Sahli, S., Duval, P.L., Sheng, Y., Lavigne, D.A.: Robust vehicle detection in aerial images based on salient region selection and superpixel classification. In: SPIE, vol. 8020 (2011)

  29. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: ICCV, pp. 213–220 (2009)

  30. Tan, T.N., Sullivan, G.D., Baker, K.D.: Model-based localisation and recognition of road vehicles. Int. J. Comput. Vis. 27, 5–25 (1998)

    Article  Google Scholar 

  31. Thomas, A., Ferrar Vand Leibe, B., Tuytelaars, T., Schiel, B., Van Gool, L.: Towards multi-view object class detection. In: CVPR, pp. 1589–1596 (2006)

  32. Toshev, A., Makadia, A., Daniilidis, K.: Shape-based object recognition in videos using 3D synthetic object models. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 288–295 (2009)

  33. Vedaldi, A., Fulkerson, B.: VLFEAT: An open and portable library of computer vision algorithms. http://www.vlfeat.org (2008)

  34. Zhang, Z., Tan, T., huang, K., Wang, Y.: 3D deformable model based localization and recognition of road vehicles. IEEE Trans. Image Process. 21(1),1–13 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranam Janney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janney, P., Booth, D. Pose-invariant vehicle identification in aerial electro-optical imagery. Machine Vision and Applications 26, 575–591 (2015). https://doi.org/10.1007/s00138-015-0687-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-015-0687-9

Keywords

Navigation