Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Automatic plant identification from photographs

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

We present a plant identification system for automatically identifying the plant in a given image. In addition to common difficulties faced in object recognition, such as light, pose and orientation variations, there are further difficulties particular to this problem, such as changing leaf shapes according to plant age and changes in the overall shape due to leaf composition. Our system uses a rich variety of shape, texture and color features, some being specific to the plant domain. The system has achieved the best overall score in the ImageCLEF’12 plant identification campaign in both the automatic and human-assisted categories. We report the results of this system on the publicly available ImageCLEF’12 plant dataset, as well as the effectiveness of individual features. The results show 61 and 81 % accuracies in classifying the 126 different plant species in the top-1 and top-5 choices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Belhumeur, P.N., Chen, D., Feiner, S., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L.: Searching the world’s herbaria: a system for visual identification of plant species. In: European Conference on Computer Vision, pp. 116–129, Marseille (2008)

  2. Bruno, O.M., Plotze, R.de O., Falvo, M., de Castro, M.: Fractal dimension applied to plant identification. Inf. Sci. 178(12), 2722–2733 (2008)

    Article  Google Scholar 

  3. Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthelemy, D., Molino, J., Birnbaum, P., Mouysset, E., Picard, M.: The CLEF 2011 plant image classification task. In: CLEF 2011 Working Notes, Amsterdam (2011)

  4. Neto, J.C., Meyer, G.E., Jones, D.D.: Individual leaf extractions from young canopy images using Gustafson–Kessel clustering and a genetic algorithm. Comput. Electron. Agric. 51(1–2), 66–85 (2006)

    Article  Google Scholar 

  5. Yahiaoui, I., Hervé, N., Boujemaa, N.: Shape-based image retrieval in botanical collections. In: Pacific-Rim Conference on Multimedia, pp. 357–364, Hangzhou (2006)

  6. Park, J., Hwang, E., Nam, Y.: Utilizing venation features for efficient leaf image retrieval. J. Syst. Softw. 81(1), 71–82 (2008)

    Article  Google Scholar 

  7. Wang, X.-F., Huang, D.-S., Du, J.-X., Xu, H., Heutte, L.: Classification of plant leaf images with complicated background. Appl. Math. Comput. 205(2), 916–926 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Teng, C.H., Kuo, Y.T., Chen, Y.S.: Leaf segmentation, its 3d position estimation and leaf classification from a few images with very close viewpoints. In: International Conference on Image Analysis and Recognition, pp. 937–946, Halifax (2009)

  9. Villena-Román, J., Lana-Serrano, S., González-Cristóbal, J.C.: In: Proceeding of CLEF 2011 Labs and Workshop, Notebook Papers. Amsterdam, The Netherlands (2011)

  10. Paris, S., Halkias, X., Glotin, H.: Participation of LSIS/DYNI to ImageCLEF 2012 plant images classification task. In: Proceeding of CLEF 2012 Labs and Workshop, Notebook Papers. Rome, Italy (2012)

  11. Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthelemy, D., Boujemaa, N., Molino, J.: The ImageCLEF 2012 plant image identification task. In: ImageCLEF 2012 Working Notes, Rome (2012)

  12. Wang, Z., Chi, Z., Feng, D.: Shape based leaf image retrieval. IEE Proc. Vis. Image Signal Process. 150(1), 34–43 (2003)

    Article  Google Scholar 

  13. Wang, Z., Chi, Z., Feng, D., Wang, Q.: Leaf image retrieval with shape features. In: Proceedings of the International Conference on Advances in Visual Information Systems, pp. 477–487, London (2000)

  14. Wang, Z., Lu, B., Chi, Z., Feng, D.: Leaf image classification with shape context and sift descriptors. In: International Conference on Digital Image Computing Techniques and Applications, pp. 650–654, Queensland (2011)

  15. Neto, J.C., Meyer, G.E., Jones, D.D., Samal, A.K.: Plant species identification using elliptic Fourier leaf shape analysis. Comput. Electron. Agric. 50(2), 121–134 (2006)

    Article  Google Scholar 

  16. Nam, Y., Hwang, E., Kim, D.: A similarity-based leaf image retrieval scheme: joining shape and venation features. Comput. Vis. Image Underst. 110(2), 245–259 (2008)

    Article  Google Scholar 

  17. Lin, F., Zheng, C., Wang, X., Man, Q.: Multiple classification of plant leaves based on Gabor transform and LBP operator. In: Communications in Computer and Information Science, pp. 432–439, Shanghai (2008)

  18. Beghin, T., Cope, J.S., Remagnino, P., Barman, S.: Shape and texture based plant leaf classification. In: Advanced Concepts for Intelligent Visual Systems, pp. 345–353, Sydney (2010)

  19. Hussein, A.N., Mashohor, S., Saripan, M.I.: A texture-based approach for content based image retrieval system for plant leaves images. In: International Colloquium on Signal Processing and its Applications, pp. 11–14, Penang (2011)

  20. Man, Q., Zheng, C., Wang, X., Lin, F.: Recognition of plant leaves using support vector machine. In: Communications in Computer and Information Science, vol. 15, pp. 192–199, Shanghai (2008)

  21. Chen, S.Y., Lee, C.L.: Classification of leaf images. Int. J. Imaging Syst. Technol. 16(1), 15–23 (2006)

    Article  Google Scholar 

  22. Hossain, J., Amin, M.A.: Leaf shape identification based plant biometrics. In: International Conference on Computer and Information Technology, pp. 458–463, Dhaka (2010)

  23. Du, J.X., Wang, X.-F., Zhang, G.-J.: Leaf shape based plant species recognition. Appl. Math. Comput. 185(2), 883–893 (2007)

    Article  MATH  Google Scholar 

  24. Backes, A.R., Bruno, O.M.: Shape classification using complex network and multi-scale fractal dimension. Pattern Recogn. Lett. 31(1), 44–51 (2010)

    Article  Google Scholar 

  25. Casanova, D., Florindo, J.B., Gonçalves, W.N., Bruno, O.M.: IFSC/USP at ImageCLEF 2012: plant identification task. In: Proceeding of CLEF 2012 Labs and Workshop, Notebook Papers. Rome, Italy (2012)

  26. Zhang, S., Lei, Y., Dong, T., Zhang, X.-P.: Label propagation based supervised locality projection analysis for plant leaf classification. Pattern Recogn. 46(7), 1891–1897 (2013)

  27. Manh, A.G., Rabatel, G., Assemat, L., Aldon, M.J.: Weed leaf image segmentation by deformable templates. J. Agric. Eng. Res. 80(2), 139–146 (2001)

    Article  Google Scholar 

  28. Tang, X., Liu, M., Zhao, H., Tao, W.: Leaf extraction from complicated background. In: 2nd International Congress on Image and Signal Processing, pp. 1–5, Tianjin (2009)

  29. Valliammal, N., Geethalakshmi, S.N.: Hybrid image segmentation algorithm for leaf recognition and characterization. In: International Conference on Process Automation, Control and Computing, pp. 1–6, Tamilnadu (2011)

  30. Kebapci, H., Yanikoglu, B., Unal, G.: Plant image retrieval using color, shape and texture features. Comput. J. 53(1), 1–16 (2010)

    Article  Google Scholar 

  31. White, S.M., Marino, D., Feiner, S.: Designing a mobile user interface for automated species identification. In: Conference on Human Factors in Computing Systems, pp. 291–294, San Jose (2007)

  32. Nilsback, M.E., Zisserman, A.: Delving deeper into the whorl of flower segmentation. Image Vis. Comput. 28(6), 1049–1062 (2009)

    Article  Google Scholar 

  33. Saitoh, T., Aoki, K., Kaneko, T.: Automatic recognition of blooming flowers. In: International Conference on Pattern Recognition, vol. 1, pp. 27–30, Cambridge (2004)

  34. Söderkvist, O.J.O.: Computer vision classification of leaves from Swedish trees. Master’s thesis, Linköping University, Linköping (2001)

  35. The ICL leaf dataset. http://www.intelengine.cn/English/dataset/ (2010). Accessed Mar 2014

  36. Agarwal, G., Belhumeur, P., Feiner, S., Jacobs, D., Kress, J.W.R., Ramamoorthi, N.B., Dixit, N., Ling, H., Russell, D., Mahajan, R., Shirdhonkar, S., Sunkavalli, K., White, S.: First steps toward an electronic field guide for plants. Taxon 55(3), 597–610 (2006)

    Article  Google Scholar 

  37. Abbasi, S., Mokhtarian, F., Kittler, J.: Reliable classification of chrysanthemum leaves through curvature scale space. In: International Conference on Scale-Space Theory in Computer Vision, pp. 284–295, Utrecht (1997)

  38. Mokhtarian, F., Abbasi, S.: Matching shapes with self-intersections: application to leaf classification. IEEE Trans. Image Process. 13(5), 653–661 (2004)

    Article  Google Scholar 

  39. Im, C., Nishida, H., Kunii, T.L.: Recognizing plant species by leaf shapes—a case study of the acer family. In: International Conference on Pattern Recognition, vol. 2, pp. 1171–1173, Brisbane (1998)

  40. Pérez, A.J., López, F., Benlloch, J.V., Christensen, S.: Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agric. 25(3), 197–212 (2000)

    Article  Google Scholar 

  41. Arora, A., Gupta, A., Bagmar, N., Mishra, S., Bhattacharya, A.: A plant identification system using shape and morphological features on segmented leaflets: team IITK, CLEF 2012. In: Proceeding of CLEF 2012 Labs and Workshop, Notebook Papers. Rome, Italy (2012)

  42. Bakic, V., Yahiaoui, I., Mouine, S., Litayem, S., Ouertani, W., Verroust-Blondet, A., Goëau, H., Joly, A.: Inria IMEDIA2’s participation at ImageCLEF 2012 plant identification task. In: Proceeding of CLEF 2012 Labs and Workshop, Notebook Papers. Rome, Italy (2012)

  43. Zheng, P., Zhao, Z.-Q., Glotin, H.: ZhaoHFUT at ImageCLEF 2012 plant identification task. In: Proceeding of CLEF 2012 Labs and Workshop, Notebook Papers. Rome, Italy (2012)

  44. Böttcher, T., Schmidt, C., Zellhöfer, D., Schmitt, I.: BTU DBIS’ plant identification runs at ImageCLEF 2012. In: Proceeding of CLEF 2012 Labs and Workshop, Notebook Papers. Rome, Italy (2012)

  45. Manjunath, B.S., Ohm, J.R., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circuits Syst. Video Technol. 11(6), 703–715 (2001)

    Article  Google Scholar 

  46. Yanikoglu, B., Aptoula, E., Tirkaz, C.: Sabanci-Okan system at ImageCLEF 2012: combining features and classifiers for plant identification. In: CLEF Working Notes, Rome (2012)

  47. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  48. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  49. Aptoula, E., Lefèvre, S.: A basin morphology approach to colour image segmentation by region merging. In: Proceedings of the Asian Conference in Computer Vision, vol. 4843, pp. 935–944, Tokyo (2007)

  50. Aptoula, E., Lefèvre, S.: On the morphological processing of hue. Image Vis. Comput. 27(9), 1394–1401 (2009)

    Article  Google Scholar 

  51. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, pp. 433–482. Dekker, New York (1993)

    Google Scholar 

  52. Knight, D., Painter, J., Potter, M.: Automatic plant leaf classification for a mobile field guide (2010)

  53. Shu, X., Wu, X.-J.: A novel contour descriptor for 2d shape matching and its application to image retrieval. Image Vis. Comput. 29(4), 286–294 (2011)

    Article  Google Scholar 

  54. Aptoula, E.: Comparative study of moment based parameterization for morphological texture description. J. Vis. Commun. Image Represent. 23(8), 1213–1224 (2012)

    Article  Google Scholar 

  55. Aptoula, E.: Extending morphological covariance. Pattern Recogn. 45(12), 4524–4535 (2012)

    Article  Google Scholar 

  56. Yanikoglu, B., Aptoula, E., Tirkaz, C.: Sabanci-Okan system at ImageCLEF 2011: plant identification task. In: CLEF Working Notes, Amsterdam (2011)

  57. Ma, W.Y., Manjunath, B.S.: Texture features and learning similarity. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 425–430 (1996)

  58. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  59. Hanbury, A.: Circular statistics applied to colour images. In: Computer Vision Winter Workshop, pp. 55–60, Valtice (2003)

  60. Mindru, F., Tuytelaars, T., Van Gool, L., Moons, T.: Moment invariants for recognition under changing viewpoint and illumination. Comput. Vis. Image Underst. 94(1–3), 3–27 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers, whose remarks helped improve this article substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Yanikoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanikoglu, B., Aptoula, E. & Tirkaz, C. Automatic plant identification from photographs. Machine Vision and Applications 25, 1369–1383 (2014). https://doi.org/10.1007/s00138-014-0612-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-014-0612-7

Keywords

Navigation