Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Face relighting using discriminative 2D spherical spaces for face recognition

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

As part of the face recognition task in a robust security system, we propose a novel approach for the illumination recovery of faces with cast shadows and specularities. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients by using the face spherical spaces properties. First, an illumination training database is generated by computing the properties of the spherical spaces out of face albedo and normal values estimated from 2D training images. The training database is then discriminately divided into two directions in terms of the illumination quality and light direction of each image. Based on the generated multi-level illumination discriminative training space, we analyze the target face pixels and compare them with the appropriate training subspace using pre-generated tiles. When designing the framework, practical real-time processing speed and small image size were considered. In contrast to other approaches, our technique requires neither 3D face models nor restricted illumination conditions for the training process. Furthermore, the proposed approach uses one single face image to estimate the face albedo and face spherical spaces. In this work, we also provide the results of a series of experiments performed on publicly available databases to show the significant improvements in the face recognition rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nagar, A., Choi, H., Jain, A.K.: Evidential value of automated latent fingerprint comparison: an empirical approach. IEEE Trans. Inf. Forensics Secur. 7(6), 1752–1765 (2012)

    Article  Google Scholar 

  2. Tsai, C., Lin, H., Taur, J., Tao, C.: Iris recognition using possibilistic fuzzy matching on local features. IEEE Trans. Syst. Man Cybern. 42(1), 150–162 (2012)

    Article  Google Scholar 

  3. Hoover, C., Maciejewski, A., Roberts, G.: Fast eigenspace decomposition of images of objects with variation in illumination and pose. IEEE Trans. Syst. Man Cybern. 41(2), 318–329 (2011)

    Article  Google Scholar 

  4. Lu, J., Plataniotis, K., Venetsanopoulos, A., Li, S.: Ensemble-based discriminant learning with boosting for face recognition. IEEE Trans. Neural Netw. 17, 166–178 (2006)

    Article  Google Scholar 

  5. Wang, X., Tang, X.: Random sampling for subspace face recognition. Int. J. Comput. Vis. 70(1), 91–104 (2006)

    Article  Google Scholar 

  6. Hennings-Yeomans, P., Baker, S., Kumar, B.: Simultaneous super-resolution and feature extraction for recognition of low-resolution faces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8. (2008)

  7. Jiang, Y., Chen, X., Guo, P., Lu, H.: An improved random sampling LDA for face recognition. In: Congress in Image and Signal Processing CISP, pp. 685–689. (2008)

  8. Bebis, G., Bourbakis, N.: 3-D object recognition using 2-D views. IEEE Trans. Image Process. 17(11), 2236–2255 (2008)

    Article  MathSciNet  Google Scholar 

  9. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  10. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination directions. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 721–732 (1997)

    Article  Google Scholar 

  11. del Solar, J.R., Quinteros, J.: Illumination compensation and normalization in eigenspace-based face recognition: a comparative study of different pre-processing approaches. Pattern Recognit. Lett. 29(14), 1966–1979 (2008)

    Google Scholar 

  12. Gross, R., Brajovie, V.: An image preprocessing algorithm for illumination invariant face recognition. In: 4th International Conference on Audio and Video Based Biometric Person Authentication, vol. 2668, pp. 10–18. (2003)

  13. Sim, T., Kanade, T.: Illuminating the face. Technical, Report CMU-RI-TR-01-31. (2001)

  14. Biswas, S., Aggarwal, G., Chellappa, R.: Robust estimation of albedo for illumination-invariant matching and shape recovery. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 884–899 (2009)

    Article  Google Scholar 

  15. Castillo, C., Jacobs, D.: Using stereo matching for 2-D face recognition across pose. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (2007)

  16. Shashua, A., Riklin, T.: The quotient image: class-based re-rendering and recognition with varying illuminations. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 129–139 (2001)

    Article  Google Scholar 

  17. Zhou, K., Aggarwal, G., Chellappa, R., Jacobs, W.: Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 230–245 (2007)

    Article  Google Scholar 

  18. Georghiades, A., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  19. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. In: Proceedings of the IEEE Computer Society Conference on on Computer Vision, pp. 383–390. (2001)

  20. Lee, K., Ho, J., Kriegman, D.: Nine points of light: Acquiring subspaces for face recognition under variable lighting. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 519–525. (2001)

  21. Zhang, L., Samaras, D.: Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 351–363 (2006)

    Article  Google Scholar 

  22. Xiea, F., Taoa, L., Xu, G.: Estimating illumination parameters using spherical harmonics coefficients in frequency space. Tsinghua Sci. Technol. 12(1), 44–50 (2007)

    Article  Google Scholar 

  23. Wen, Z., Liu, Z., Huang, T.: Face relighting with radiance environment maps. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 158–165. (2003)

  24. Samaras, D., Metaxas, D.: Coupled lighting direction and shape estimation from single images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision, vol. 2, pp. 868–874. (1999)

  25. Mutelo, M., Woo, L., Dlay, S.: Discriminant analysis of the two-dimensional gabor features for face recognition. IET Comput. Vis. 2(2), 37–49 (2008)

    Article  Google Scholar 

  26. Ling-zhi, L., Si-Wei, L., Mei, T.: Whitenedfaces recognition with PCA and ICA. IEEE Signal Process. Lett. 14(12), 1008–1011 (2007)

    Article  Google Scholar 

  27. Yang, J., Frangi, F., Yang, J.-Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 230–244 (2005)

    Article  Google Scholar 

  28. Liu, N., Lai, J., Zheng, W.: A facial sparse descriptor for single image based face recognition. Neurocomputing 93(1), 77–87 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Almaddah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almaddah, A., Vural, S., Mae, Y. et al. Face relighting using discriminative 2D spherical spaces for face recognition. Machine Vision and Applications 25, 845–857 (2014). https://doi.org/10.1007/s00138-013-0584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0584-z

Keywords

Navigation