Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Background subtraction using finite mixtures of asymmetric Gaussian distributions and shadow detection

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Foreground segmentation of moving regions in image sequences is a fundamental step in many vision systems including automated video surveillance, human-machine interface, and optical motion capture. Many models have been introduced to deal with the problems of modeling the background and detecting the moving objects in the scene. One of the successful solutions to these problems is the use of the well-known adaptive Gaussian mixture model. However, this method suffers from some drawbacks. Modeling the background using the Gaussian mixture implies the assumption that the background and foreground distributions are Gaussians which is not always the case for most environments. In addition, it is unable to distinguish between moving shadows and moving objects. In this paper, we try to overcome these problem using a mixture of asymmetric Gaussians to enhance the robustness and flexibility of mixture modeling, and a shadow detection scheme to remove unwanted shadows from the scene. Furthermore, we apply this method to real image sequences of both indoor and outdoor scenes. The results of comparing our method to different state of the art background subtraction methods show the efficiency of our model for real-time segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tavakkoli, A., Nicolescu, M., Bebis, G., Nicolescu, M.: Non-parametric statistical background modeling for efficient foreground region detection. Mach. Vis. Appl. 7(2), 1–15 (2009)

    Google Scholar 

  2. Farcas, D., Marghes, C., Bouwmans, T.: Background subtraction via incremental maximum margin criterion: a discriminative subspace approach. Mach. Vis. Appl. 23(6), 1083–1101 (2012)

    Article  Google Scholar 

  3. Cheng, J., Yang, J., Zhou, Y., Cui, Y.: Flexible background mixture models for foreground segmentation. Image Vis. Comput. 24(5), 473–482 (2006)

    Article  Google Scholar 

  4. Abbott, R.G., Williams, L.R.: Multiple target tracking with lazy background subtraction and connected components analysis. Mach. Vis. Appl. 20(2), 93–101 (2009)

    Article  Google Scholar 

  5. Fuentes, L.M., Velastin, S.A.: People tracking in surveillance applications. Image Vis. Comput. 24(11), 1165–1171 (2006)

    Article  Google Scholar 

  6. Tian, Y.L., Senior, A., Lu, M.: Robust and efficient foreground analysis in complex surveillance videos. Mach. Vis. Appl. 23(5), 967–983 (2012)

    Article  Google Scholar 

  7. Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 302–309 (2004)

  8. Ren, Y., Chua, C.-S., Ho, Y.-K.: Motion detection with nonstationary background. Mach. Vis. Appl. 13(332–343), 93–101 (2003)

    Google Scholar 

  9. Or, S-H., Wong, Kin-H., Lee, K-S., Lao, T-K.: Panoramic video segmentation using color mixture models. In: The15th International Conference on Pattern Recognition (ICPR), Vol. 3, pp. 387–390 (2000)

  10. El Baf, F., Bouwmans, T., Vachon, B.: Comparison of background subtraction methods for a multimedia learning space. In: The International Conference on Signal Processing and Multimedia Applications (SIGMAP), pp. 153–158 (2007)

  11. Bouwmans, T., El Baf, F., Vachon, B.: Background modeling using mixture of gaussians for foreground detection: a survey. Recent Pat. Comput. Sci. 1(3), 219–237 (2008)

    Article  Google Scholar 

  12. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 252–258 (1999)

  13. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Google Scholar 

  14. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: The 17th International Conference on Pattern Recognition (ICPR), pp. 28–31 (2004)

  15. Peng, A., Pieczynski, W.: Adaptive mixture estimation and unsupervised local Bayesian image segmentation. Graph. Models Image Process. 57(5), 389–399 (1995)

    Article  Google Scholar 

  16. Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach. In: The Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 1–3 (1997)

  17. Lee, D.-S.: Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 827–832 (2005)

    Article  Google Scholar 

  18. Wang, D., Xie, W., Pei, J., Lu, Z.: Moving area detection based on estimation of static background. J. Inf. Comput. Sci. 2(1), 129–134 (2005)

    Google Scholar 

  19. Allili, M.S., Bouguila, N., Ziou, D.: Finite general gaussian mixture modeling and application to image and video foreground segmentation. J. Electron. Imaging 17(1), 1–13 (2008)

    Google Scholar 

  20. Elguebaly, T., Bouguila, N.: Bayesian learning of finite generalized gaussian mixture models on images. Signal Process. 91(4), 801–820 (2011)

    Article  MATH  Google Scholar 

  21. Elguebaly, T., Bouguila, N.: A nonparametric Bayesian approach for enhanced pedestrian detection and foreground segmentation. In: IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW), pp. 21–26 (2011)

  22. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1987)

    Article  Google Scholar 

  24. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  25. Bouguila, N., Ziou, D.: A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Trans. Neural Netw. 21(1), 107–122 (2010)

    Article  Google Scholar 

  26. Wallace, C.S., Boulton, D.M.: An information measure for classification. Comput. J. 11(2), 195–209 (1968)

    Article  Google Scholar 

  27. Kato, T., Omachi, S., Aso, H.: Asymmetric gaussian and its application to pattern recognition. In: The Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition (SSPR), pp. 405–413 (2002)

  28. Baxter, R.A., Olivier, J.J.: Finding overlapping components with MML. Stat. Comput. 10(1), 5–16 (2000)

    Article  Google Scholar 

  29. Grimson, W.E.L., Stauffer, C., Romano, R., Lee, L.: Using adaptive tracking to classify and monitor activities in a site. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22–29 (1998)

  30. Cucchiara, R., Grana, C., Piccardi, M., Prati, A., Sirotti, S.: Improving shadow suppression in moving object detection with HSV color information. In: IEEE Intelligent Transportation Systems, pp. 334–339 (2001)

  31. Schreer, O., Feldmann, I., Goelz, U., Kauff, P.: Fast and robust shadow detection in videoconference applications. In: Fourth IEEE International Symposium on Video/Image Processing and Multimedia Communications, pp. 371–375 (2002)

  32. Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Comput. Vis. Image Underst. 95(2), 238–259 (2004)

    Article  Google Scholar 

  33. Horprasert, T., Hardwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE International Conference on Computer Vision, pp. 1–19 (1999)

  34. Zhang, SW., Fang, X. Z., Yang, X.K.: Moving cast shadows detection using ratio edge. IEEE Trans. Multimed. 9(6):1202–1214 (2007)

    Google Scholar 

  35. Choi, J.M., Yoo, Y.J., Choi, J.Y.: Adaptive shadow estimator for removing shadow of moving object. Comput. Vis. Image Underst. 114(9), 1017–1029 (2010)

    Article  Google Scholar 

  36. Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 5968 (2006)

    Article  Google Scholar 

  37. Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Workshop on Advanced Video Based Surveillance Systems, pp. 1–5 (2001)

  38. Martel-Brisson, N., Zaccarin, A.: Learning and removing cast shadows through a multidistribution approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1133–1146 (2007)

    Article  Google Scholar 

  39. Liu, Z., Huang, K., Tan, T., Wang, L.: Cast shadow removal combining local and global features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), p. 18 (2007)

  40. Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: changedetection.net: a new change detection benchmark dataset. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8 (2012)

  41. Evangelio, R.H., Patzold, M., Sikora, T.: Splitting gaussians in mixture models. In: IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, pp. 300–305 (2012)

  42. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: The 6th European Conference on Computer Vision (ECCV), pp. 751–767 (2000)

  43. Nonaka, Y., Shimada, A., Nagahara, H., Taniguchi, R.: Evaluation report of integrated background modeling based on spatio-temporal features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–14 (2012)

  44. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance application. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The completion of this research was made possible, thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC). The author would like to thank the anonymous referees and the associate editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Bouguila.

Appendices

Appendix A

In this Appendix, we calculate the derivative of \(\frac{\partial L(\varTheta ,Z,{\mathcal {X}})}{\partial \mu _{jk}}, \frac{\partial L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{l_{jk}}}, \frac{\partial L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{r_{jk}}}, \frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{l_{jk}}^{2}} \), and \(\frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{r_{jk}}^{2}}\) used in the EM algorithm and background subtraction.

$$\begin{aligned} \frac{\partial L(\varTheta ,Z,{\mathcal {X}})}{\partial \mu _{jk}}&= \sum _{i=1,X_{ik}<\mu _{jk}}^{N}\frac{\hat{Z_{ij}}(X_{ik}-\mu _{jk})}{\sigma _{l_{jk}}^2} \nonumber \\&+\sum _{i=1,X_{ik}\ge \mu _{jk}}^{N}\frac{\hat{Z_{ij}}(X_{ik}-\mu _{jk})}{\sigma _{r_{jk}}^2}\end{aligned}$$
(40)
$$\begin{aligned} \frac{\partial L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{l_{jk}}}&= -\sum _{i=1}^{N}\frac{\hat{Z_{ij}}}{\sigma _{l_{jk}}+\sigma _{r_{jk}}} \nonumber \\&+\sum _{i=1,X_{ik}<\mu _{jk}}^{N}\frac{\hat{Z_{ij}}(X_{ik}-\mu _{jk})^2}{\sigma _{l_{jk}}^3}\end{aligned}$$
(41)
$$\begin{aligned} \frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{l_{jk}}^{2}}&= \sum _{i=1}^{N}\frac{\hat{Z_{ij}}}{(\sigma _{l_{jk}}+\sigma _{r_{jk}})^2} \nonumber \\&-3\sum _{i=1,X_{ik}<\mu _{jk}}^{N}\frac{\hat{Z_{ij}}(X_{ik}-\mu _{jk})^2}{\sigma _{l_{jk}}^4}\end{aligned}$$
(42)
$$\begin{aligned} \frac{\partial L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{r_{jk}}}&= -\sum _{i=1}^{N}\frac{\hat{Z_{ij}}}{\sigma _{l_{jk}}+\sigma _{r_{jk}}} \nonumber \\&+\sum _{i=1,X_{ik}\ge \mu _{jk}}^{N}\frac{\hat{Z_{ij}}(X_{ik}-\mu _{jk})^2}{\sigma _{r_{jk}}^3}\end{aligned}$$
(43)
$$\begin{aligned} \frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{r_{jk}}^{2}}&= \sum _{i=1}^{N}\frac{\hat{Z_{ij}}}{(\sigma _{l_{jk}}+\sigma _{r_{jk}})^2} \nonumber \\&-3\sum _{i=1,X_{ik}\ge \mu _{jk}}^{N}\frac{\hat{Z_{ij}}(X_{ik}-\mu _{jk})^2}{\sigma _{r_{jk}}^4} \end{aligned}$$
(44)

Appendix B

In this Appendix, we develop the solutions for Eqs. (242526) used in the MML algorithm

$$\begin{aligned}&\!\!\!-\frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \mu _{jk}^{2}} = \sum _{i=l,X_{ik}<\mu _{jk}}^{l+n_j-1}\frac{1}{\sigma _{l_{jk}}^2} \nonumber \\&\!\!\! + \sum _{i=l,X_{ik}\ge \mu _{jk}}^{l+n_j-1}\frac{1}{\sigma _{r_{jk}}^2}\end{aligned}$$
(45)
$$\begin{aligned}&\!\!\!\frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \mu _{jk_1} \mu _{jk_2}} = 0\end{aligned}$$
(46)
$$\begin{aligned}&\!\!\!\frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{l_{jk}}^{2}} = \sum _{i=l}^{l+n_j-1}\frac{1}{(\sigma _{l_{jk}}+\sigma _{r_{jk}})^2} \nonumber \\&\!\!\!-3\sum _{i=l,X_{ik}<\mu _{jk}}^{l+n_j-1}\frac{(X_{ik}-\mu _{jk})^2}{\sigma _{l_{jk}}^4}\end{aligned}$$
(47)
$$\begin{aligned}&\!\!\!\frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{l_{jk_{1}}}\sigma _{l_{jk_{2}}}} = 0\end{aligned}$$
(48)
$$\begin{aligned}&\!\!\!\frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{r_{jk}}^{2}} =\sum _{i=l}^{l+n_j-1}\frac{1}{(\sigma _{l_{jk}}+\sigma _{r_{jk}})^2} \nonumber \\&\!\!\!-3\sum _{i=l,X_{ik}\ge \mu _{jk}}^{l+n_j-1}\frac{(X_{ik}- \mu _{jk})^2}{\sigma _{r_{jk}}^4}\end{aligned}$$
(49)
$$\begin{aligned}&\!\!\!\frac{\partial ^2 L(\varTheta ,Z,{\mathcal {X}})}{\partial \sigma _{r_{jk_{1}}}\sigma _{r_{jk_{2}}}} = 0 \end{aligned}$$
(50)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elguebaly, T., Bouguila, N. Background subtraction using finite mixtures of asymmetric Gaussian distributions and shadow detection. Machine Vision and Applications 25, 1145–1162 (2014). https://doi.org/10.1007/s00138-013-0568-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0568-z

Keywords

Navigation