Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mixture of Merged Gaussian Algorithm using RTDENN

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Computer vision has been a widely developed research area in the last years, and it has been used for a broad range of applications, including surveillance systems. In the pursuit of an autonomous and smart motion detection system, a reliable segmentation algorithm is required. The main problems of present segmentation solutions are their high execution time and the lack of robustness against changes in the environment due to variations in lighting, shadows, occlusions or the movement of secondary objects. This paper proposes a new algorithm named Mixture of Merged Gaussian Algorithm (MMGA) that aims to achieve a substantial improvement in execution speed to enable real-time implementation, without compromising the reliability and accuracy of the segmentation. The MMGA is based on the combination of a probabilistic model for the background, similar to the Mixture of Gaussian Model (MGM), with the learning processes of Real-Time Dynamic Ellipsoidal Neural Networks (RTDENN) for the update of the model. The proposed algorithm has been tested for different videos and compared to the MGM and SDGM algorithms. Results show a reduction of 30 to 50 % in execution times. Furthermore, the segmentation is more robust against the effect of noise and adapts faster to lighting changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.iit.upcomillas.es/malvar/MMGA.php.

References

  1. Alvar, M., Sánchez, A., Arranz, A.: Fast background subtraction using static and dynamic gates. Artif. Intell. Rev. 2011, 1–16 (2012). doi:10.1007/s10462-011-9301-3

    Google Scholar 

  2. Chen, S., Zhang, J., Li, Y., Zhang, J.: A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction. IEEE Trans. Ind. Inf. 8(1), 118–127 (2012). doi:10.1109/TII.2011.2173202

    Article  Google Scholar 

  3. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1337–1342 (2003)

    Article  Google Scholar 

  4. Del Rose, M., Wagner, C.: Survey on classifying human actions through visual sensors. Artif. Intell. Rev. 2011, 1–11 (2011). doi:10.1007/s10462-011-9232-z

    Google Scholar 

  5. Dockstader, S., Tekalp, A.: Real-time object tracking and human face detection in cluttered scenes. In: Image and Video Communications and Processing, 2000. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol 3974, pp 957–968 (2000)

  6. Hampapur, A., Brown, L., Connell, J., Pankanti, S., Senior, A., Tian, Y.: Smart surveillance: applications, technologies and implications. In: Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia, vol. 2, pp. 1133–1138 (2003). doi:10.1109/ICICS.2003.1292637

  7. Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006). doi:10.1109/TPAMI.2006.68

    Article  Google Scholar 

  8. Horprasert, T., Harwood, D., Davis, LS.: A statistical approach for real-time robust background subtraction and shadow detection, pp 1–19 (1999)

  9. Howarth, R.: Spatial models for wide-area visual surveillance: computational approaches and spatial building-blocks. Artif. Intell. Rev. 23, 97–155 (2005). doi:10.1007/s10462-004-4103-5

    Article  Google Scholar 

  10. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foregroundbackground segmentation using codebook model. Real-Time Imag. 11(3), 172–185 (2005)

    Article  Google Scholar 

  11. Ko, T.: A survey on behavior analysis in video surveillance for homeland security applications. In: Applied Imagery Pattern Recognition Workshop, 2008. AIPR ’08. 37th IEEE, pp. 1–8 (2008) doi:10.1109/AIPR.2008.4906450

  12. Lipton, A.J., Fujiyoshi, H., Patil, R.S.: Moving target classification and tracking from real-time video. In: Proceedings of Fourth IEEE Workshop on Applications of Computer Vision, 1998. WACV ’98, pp 8–14 (1998)

  13. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008). doi:10.1109/TIP.2008.924285

    Article  MathSciNet  Google Scholar 

  14. Munkelt, O., Kirchner, H.: STABIL: A system for monitoring persons in image sequences. In: Image and Video Processing IV, 1996. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 2666, pp. 163–179 (1996)

  15. Piccardi, M.: Background subtraction techniques: a review. In: IEEE International Conference on Systems, Man and Cybernetics 4, 3099–3104 (2004). doi:10.1109/ICSMC.2004.1400815

  16. Power, P., Schoonees, J.: Understanding background mixture models for foreground segmentation. In: Proceedings Image and Vision Computing New Zealand, pp. 267–271 (2002)

  17. Regazzoni, C., Ramesh, V., Foresti, G.L.: Special issue on video communications, processing, and understanding for third generation surveillance systems. Proc. IEEE 89(10), 1355–1539 (2001)

    Article  Google Scholar 

  18. Sánchez Miralles, A., Sanz Bobi, M.A.: Real time dynamic ellipsoidal neural network (RTDENN). In: International Conference on Signal Processing, Robotics and Automation, pp. 1991–1995 (2002)

  19. Sánchez Miralles, A., Sanz Bobi, M.A.: Global path planning in gaussian probabilistic maps. J. Intell. Robot. Syst. 40(1), 89–102 (2004). doi:10.1023/B:JINT.0000034339.13257.e6

  20. Miralles, Sánchez: A., Sanz Bobi, M.A.: A neural-based model for fast continuous and global robot location. J. Intell. Robot. Syst. 46(3), 221–243 (2006). doi:10.1007/s10846-006-9046-4

  21. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991). doi:10.1109/72.97934

    Article  Google Scholar 

  22. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recogn. 2, 246–252 (1999)

  23. Tsai, D.M., Lai, S.C.: Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans. Image Process. 18(1), 158–167 (2009). doi:10.1109/TIP.2008.2007558

    Article  MathSciNet  Google Scholar 

  24. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63, 153–161 (2005). doi:10.1007/s11263-005-6644-8

    Google Scholar 

  25. Yu, T., Zhang, C., Cohen, M., Rui, Y., Wu, Y.: Monocular video foreground/background segmentation by tracking spatial-color gaussian mixture models. In: IEEE Workshop on Motion and Video Computing, WMVC ’07 (2007)

  26. Yu, X., Chen, X., Zhang, H.: Accurate motion detection in dynamic scenes based on ego-motion estimation and optical flow segmentation combined method. In: 2011 Symposium on Photonics and Optoelectronics (SOPO), pp. 1–4 (2011) doi:10.1109/SOPO.2011.5780637

  27. Zhan, C., Duan, X., Xu, S., Song, Z., Luo, M.: An improved moving object detection algorithm based on frame difference and edge detection. In: Fourth International Conference on Image and Graphics, 2007. ICIG 2007, pp. 519–523 (2007). doi:10.1109/ICIG.2007.153

  28. Zhang, S., Yao, H., Liu, S.: Dynamic background subtraction based on local dependency histogram. Int. J. Pattern Recogn. Artif. Intell. 23(7), 1397–1419 (2009)

    Article  Google Scholar 

  29. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 2, pp. 28–31 (2004). doi:10.1109/ICPR.2004.1333992

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Alvar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvar, M., Rodriguez-Calvo, A., Sanchez-Miralles, A. et al. Mixture of Merged Gaussian Algorithm using RTDENN. Machine Vision and Applications 25, 1133–1144 (2014). https://doi.org/10.1007/s00138-013-0550-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0550-9

Keywords

Navigation