Abstract
An increasing number of methods for background subtraction use Robust PCA to identify sparse foreground objects. While many algorithms use the \(\ell _1\)-norm as a convex relaxation of the ideal sparsifying function, we approach the problem with a smoothed \(\ell _p\)-quasi-norm and present pROST, a method for robust online subspace tracking. The algorithm is based on alternating minimization on manifolds. Implemented on a graphics processing unit, it achieves realtime performance at a resolution of \(160 \times 120\). Experimental results on a state-of-the-art benchmark for background subtraction on real-world video data indicate that the method succeeds at a broad variety of background subtraction scenarios, and it outperforms competing approaches when video quality is deteriorated by camera jitter.
Similar content being viewed by others
References
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton (2008)
Balzano, L., Nowak, R., Recht, B.: Online identification and tracking of subspaces from highly incomplete information. In: Allerton Conference on Communication, Control, and, Computing, pp. 704–711 (2010)
Boumal, N., Absil, P.A.: RTRMC: A Riemannian trust-region method for low-rank matrix completion. In: Advances in Neural Information Processing Systems, pp. 406–414 (2011)
Bouwmans, T.: Subspace learning for background modeling: a survey. RPCS 2(3), 223–234 (2009)
Bouwmans, T.: Recent advanced statistical background modeling for foreground detection: A systematic survey. RPCS 4(3), 147–176 (2011)
Brutzer, S., Höferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: Computer Vision and Pattern Recognition, pp. 1937–1944. IEEE (2011)
Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J ACM 58(3), 1–37 (2011)
Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background subtraction for automated multisensor surveillance: a comprehensive review. EURASIP J. Adv. Signal Process 43(1–43), 24 (2010)
Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)
Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving object detection in spatial domain using background removal techniques: state-of-art. RPCS 1, 32–34 (2008)
Gasso, G., Rakotomamonjy, A., Canu, S.: Recovering sparse signals with a certain family of nonconvex penalties and DC programming. Trans Signal Process 57(12), 4686–4698 (2009)
Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: Computer vision and pattern recognition workshops, pp. 1–8 (2012)
Guyon, C., Bouwmans, T., Zahzah, E.: Robust principal component analysis for background subtraction: systematic evaluation and comparative analysis. In: Principal component analysis, chap. 12, pp. 223–238. INTECH (2012)
Hage, C., Kleinsteuber, M.: Robust PCA and subspace tracking from incomplete observations using \(\ell _0\)-surrogates. Comput Stat (2013). doi:10.1007/s00180-013-0435-4
Harris, M.: Optimizing parallel reduction in CUDA. http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf (2008)
Hassanpour, H., Sedighi, M., Manashty, A.R.: Video frame’s background modeling: reviewing the techniques. J. Signal Inf. Process. 2(2), 72–78 (2011)
He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In: Computer vision and, pattern recognition, pp. 1568–1575 (2012)
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau Stand. 49, 409–436 (1952)
Huang, J., Huang, X., Metaxas, D.: Learning with dynamic group sparsity. In: ICCV, pp. 64–71 (2009)
Keshavan, R.H., Montanari, A.: Matrix completion from noisy entries. J. Mach. Learn. Res. 11, 2057–2078 (2010)
Leahy, R.M., Jeffs, B.D.: On the design of maximally sparse beamforming arrays. Antennas Propag. IEEE Trans. 39(8), 1178–1187 (1991)
Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. Trans. Image Process. 13(11), 1459–1472 (2004)
Li, Y.: On incremental and robust subspace learning. Pattern Recognit. 37, 1509–1518 (2004)
Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)
Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. Int. Conf. Comput. Vis. 1, 255–261 (1999)
Waters, A., Sankaranarayanan, A.C., Baraniuk, R.G.: SpaRCS: Recovering Low-Rank and Sparse Matrices from Compressive Measurements. In: Proceedings of Advances in Neural Information Processing Systems (2011)
Xu, Z., Shi, P., Gu, I.Y.H.: An eigenbackground subtraction method using recursive error compensation. In: Zhuang, Y., Yang,S., Rui Y., He, Q (eds.) PCM, Lecture notes in computer science, vol. 4261, pp. 779–787. Springer, Heidelberg (2006)
Zhou, T., Tao, D.: GoDec: Randomized low-rank & sparse matrix decomposition in noisy case. In: International Conference on Machine Learning, pp. 33–40 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Seidel, F., Hage, C. & Kleinsteuber, M. pROST: a smoothed \(\ell _p\)-norm robust online subspace tracking method for background subtraction in video. Machine Vision and Applications 25, 1227–1240 (2014). https://doi.org/10.1007/s00138-013-0555-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-013-0555-4