Abstract
This paper presents rotation invariant technique for iris feature extraction and fused post-classification at the decision level to improve the performance under non-ideal environmental conditions. In this work, directional iris texture features based on two-dimensional (2D) Fast Discrete Curvelet Transform (FDCT) are computed. This approach divides the normalized iris image into six sub-images. The curvelet transform is applied on each sub-image. The feature vector for each sub-image is derived using the directional energies of these curvelet coefficients. These distances are fused at the decision level through novel post-classifier using k-out-of-n: A scheme to reduce the false rejection rate. The feasibility of the proposed algorithm has been tested using UBIRIS, MMU1 and CASIA-Iris V2.0 databases and performance is compared with some of the well-known existing iris recognition algorithms. The experimental results show that the performance is comparable with some of the state-of-the-art iris recognition algorithms.
Similar content being viewed by others
References
Daugman J.G.: High confidence of visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)
Daugman J.G.: The importance of being random: statistical principles of iris recognition. Pattern Recogn. 36(2), 279–291 (2003)
Daugman J.G.: How iris recognition works. IEEE Trans Circuits Syst. Video Technol. 14(1), 21–30 (2004)
Meng, H., Xu, C.: Iris recognition algorithm based on Gabor wavelet transforms. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (2006). doi:10.1109/ICMA.2006.257485
Proenca H., Alexandre L.A.: Toward non-cooperative iris recognition: a classification approach using multiple signatures. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 607–612 (2007)
Masek, L.: Recognition of human iris pattern for biometric identification. M. Thesis, The University of Western Australia (2003)
Vatsa M., Singh R., Noore A.: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans. Syst. Man Cybern. part B: CYBERN. 38(4), 1021–1034 (2008)
Boles W.W., Boashash B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)
de Martin-Roche, D., Sanchez-Avila, C., Sanchez-Reillo, R.: Iris recognition for biometric identification using dyadic wavelet transform zero crossing. Int. Carnahan Conf. Secur. Technol. (London, England) 229–234 (2001)
Sanchez-Avila C., Sanchez-Reillo R., de Martin-Roche D.: Iris based biometric recognition using dyadic wavelet transform. IEEE Aerosp. Electron. Syst. Mag. 17(10), 3–6 (2002)
Wildes R.P.: Iris recognition: an emerging biometric technology. Proceed. IEEE. 85(9), 1348–1363 (1997)
Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient iris recognition through improvement of feature vector and classifier. ETRI J. 23(2), 61–70 (2001)
Ma, L., Wang, Y., Tan, T.: Iris recognition based on multichannel Gabor filtering. In: Proceedings of the 5th Asian Conference on Computer Vision, vol. 1, pp. 279–283 (2002)
Ma L., Tan T., Wang Y., Zhang D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)
Ma L., Tan Y., Wang T., Zhang D.: Efficient iris recognition by characterizing key local variation. IEEE Trans. Image Process. 13(6), 739–750 (2004)
Zhu, Y., Tan, T., Wang, Y.: Biometric personal identification based on iris pattern. In: Proceedings of IAPR, International Conference on Pattern Recognition (ICPR’ 2000), vol. II, pp. 805–808 (2000)
Helen S.C., Selvan S.: Iris feature extraction based on directional image representation. GVIP J. 8(4), 55–62 (2006)
Nabti M., Ghouti L., Bouridane A.: An effective and fast iris recognition system based on a combined multiscale feature extraction technique. Pattern Recogn. 41, 868–879 (2008)
Velisavljevic V.: Low-complexity iris coding and recognition based on directionlets. IEEE Trans. Inf. Forensics Secur. 4(3), 410–417 (2009)
Abhyankar A., Schuckers S.: Novel biorthogonal wavelet based iris recognition for robust biometric system. Int. J. Comput. Theory Eng. 2(2), 1793–8201 (2010)
Altun, A.A.: Recognition of selected fingerprint and iris features enhanced by curvelet transform with Artificial Neural network. In: Proceedings of 15th International Conference on Systems, signals and Image Processing, IWSSIP 2008, pp. 421–424 (2008)
Monro D.M., Rakshit S., Zhang D.: DCT-based iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 586–594 (2007)
Sun Z., Tan T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009)
Dong W., Tan T., Sun Z.: Iris matching based on personalized weight map. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1–14 (2010)
Bowyer K.W., Hollingsworth K., Flynn P.J.: Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)
Starck J., Candes E.J., Donoho D.I.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)
Sumana, I.J., Islam, M.M., Zhang, D., Lu, G.: Content based image retrieval using curvelet transform. In: Proceedings of IEEE International workshop on multimedia signal processing, MMSP08, pp. 11–16 (2008)
Majumdar A.: Bangla basic character recognition using digital curvelet transform. J. Pattern Recogn. Res. 2(1), 17–26 (2006)
Zhang, J., Zhang, Z., Huang, W., Lu, Y., Wang, Y.: Face recognition based on curvefaces. In: Proceedings of third international conference on natural Computation (ICNC 2007), vol. 2, pp. 627–631 (2007)
Candes, E.J., Demanet, L., Donoho, D.L., Ying L.: Fast discrete curvelet transform. Technical Report, CalTech (2005)
Charles, E.E.: An introduction to reliability and maintability engineering. McGraw-Hill, International Editions (1997)
Proenca, H., Alexandre, L.A.: UBIRIS: a noisy iris image database. http://www.iris.di.ubi.pt
Multimedia university iris database. http://www.pesona.mmu.edu.my/~ccteo/
CASIA-Iris V2. http://biometrics.idealtest/
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rahulkar, A.D., Jadhav, D.V. & Holambe, R.S. Fast discrete curvelet transform based anisotropic iris coding and recognition using k-out-of-n: A fused post-classifier. Machine Vision and Applications 23, 1115–1127 (2012). https://doi.org/10.1007/s00138-011-0370-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-011-0370-8