Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fast discrete curvelet transform based anisotropic iris coding and recognition using k-out-of-n: A fused post-classifier

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper presents rotation invariant technique for iris feature extraction and fused post-classification at the decision level to improve the performance under non-ideal environmental conditions. In this work, directional iris texture features based on two-dimensional (2D) Fast Discrete Curvelet Transform (FDCT) are computed. This approach divides the normalized iris image into six sub-images. The curvelet transform is applied on each sub-image. The feature vector for each sub-image is derived using the directional energies of these curvelet coefficients. These distances are fused at the decision level through novel post-classifier using k-out-of-n: A scheme to reduce the false rejection rate. The feasibility of the proposed algorithm has been tested using UBIRIS, MMU1 and CASIA-Iris V2.0 databases and performance is compared with some of the well-known existing iris recognition algorithms. The experimental results show that the performance is comparable with some of the state-of-the-art iris recognition algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daugman J.G.: High confidence of visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  2. Daugman J.G.: The importance of being random: statistical principles of iris recognition. Pattern Recogn. 36(2), 279–291 (2003)

    Article  Google Scholar 

  3. Daugman J.G.: How iris recognition works. IEEE Trans Circuits Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  4. Meng, H., Xu, C.: Iris recognition algorithm based on Gabor wavelet transforms. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (2006). doi:10.1109/ICMA.2006.257485

  5. Proenca H., Alexandre L.A.: Toward non-cooperative iris recognition: a classification approach using multiple signatures. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 607–612 (2007)

    Article  Google Scholar 

  6. Masek, L.: Recognition of human iris pattern for biometric identification. M. Thesis, The University of Western Australia (2003)

  7. Vatsa M., Singh R., Noore A.: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans. Syst. Man Cybern. part B: CYBERN. 38(4), 1021–1034 (2008)

    Article  Google Scholar 

  8. Boles W.W., Boashash B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)

    Article  Google Scholar 

  9. de Martin-Roche, D., Sanchez-Avila, C., Sanchez-Reillo, R.: Iris recognition for biometric identification using dyadic wavelet transform zero crossing. Int. Carnahan Conf. Secur. Technol. (London, England) 229–234 (2001)

  10. Sanchez-Avila C., Sanchez-Reillo R., de Martin-Roche D.: Iris based biometric recognition using dyadic wavelet transform. IEEE Aerosp. Electron. Syst. Mag. 17(10), 3–6 (2002)

    Article  Google Scholar 

  11. Wildes R.P.: Iris recognition: an emerging biometric technology. Proceed. IEEE. 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  12. Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient iris recognition through improvement of feature vector and classifier. ETRI J. 23(2), 61–70 (2001)

    Article  Google Scholar 

  13. Ma, L., Wang, Y., Tan, T.: Iris recognition based on multichannel Gabor filtering. In: Proceedings of the 5th Asian Conference on Computer Vision, vol. 1, pp. 279–283 (2002)

  14. Ma L., Tan T., Wang Y., Zhang D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)

    Article  Google Scholar 

  15. Ma L., Tan Y., Wang T., Zhang D.: Efficient iris recognition by characterizing key local variation. IEEE Trans. Image Process. 13(6), 739–750 (2004)

    Article  Google Scholar 

  16. Zhu, Y., Tan, T., Wang, Y.: Biometric personal identification based on iris pattern. In: Proceedings of IAPR, International Conference on Pattern Recognition (ICPR’ 2000), vol. II, pp. 805–808 (2000)

  17. Helen S.C., Selvan S.: Iris feature extraction based on directional image representation. GVIP J. 8(4), 55–62 (2006)

    Google Scholar 

  18. Nabti M., Ghouti L., Bouridane A.: An effective and fast iris recognition system based on a combined multiscale feature extraction technique. Pattern Recogn. 41, 868–879 (2008)

    Article  MATH  Google Scholar 

  19. Velisavljevic V.: Low-complexity iris coding and recognition based on directionlets. IEEE Trans. Inf. Forensics Secur. 4(3), 410–417 (2009)

    Article  Google Scholar 

  20. Abhyankar A., Schuckers S.: Novel biorthogonal wavelet based iris recognition for robust biometric system. Int. J. Comput. Theory Eng. 2(2), 1793–8201 (2010)

    Google Scholar 

  21. Altun, A.A.: Recognition of selected fingerprint and iris features enhanced by curvelet transform with Artificial Neural network. In: Proceedings of 15th International Conference on Systems, signals and Image Processing, IWSSIP 2008, pp. 421–424 (2008)

  22. Monro D.M., Rakshit S., Zhang D.: DCT-based iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 586–594 (2007)

    Article  Google Scholar 

  23. Sun Z., Tan T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009)

    Article  Google Scholar 

  24. Dong W., Tan T., Sun Z.: Iris matching based on personalized weight map. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1–14 (2010)

    Google Scholar 

  25. Bowyer K.W., Hollingsworth K., Flynn P.J.: Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)

    Article  Google Scholar 

  26. Starck J., Candes E.J., Donoho D.I.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  27. Sumana, I.J., Islam, M.M., Zhang, D., Lu, G.: Content based image retrieval using curvelet transform. In: Proceedings of IEEE International workshop on multimedia signal processing, MMSP08, pp. 11–16 (2008)

  28. Majumdar A.: Bangla basic character recognition using digital curvelet transform. J. Pattern Recogn. Res. 2(1), 17–26 (2006)

    Google Scholar 

  29. Zhang, J., Zhang, Z., Huang, W., Lu, Y., Wang, Y.: Face recognition based on curvefaces. In: Proceedings of third international conference on natural Computation (ICNC 2007), vol. 2, pp. 627–631 (2007)

  30. Candes, E.J., Demanet, L., Donoho, D.L., Ying L.: Fast discrete curvelet transform. Technical Report, CalTech (2005)

  31. Charles, E.E.: An introduction to reliability and maintability engineering. McGraw-Hill, International Editions (1997)

  32. Proenca, H., Alexandre, L.A.: UBIRIS: a noisy iris image database. http://www.iris.di.ubi.pt

  33. Multimedia university iris database. http://www.pesona.mmu.edu.my/~ccteo/

  34. CASIA-Iris V2. http://biometrics.idealtest/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol D. Rahulkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahulkar, A.D., Jadhav, D.V. & Holambe, R.S. Fast discrete curvelet transform based anisotropic iris coding and recognition using k-out-of-n: A fused post-classifier. Machine Vision and Applications 23, 1115–1127 (2012). https://doi.org/10.1007/s00138-011-0370-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0370-8

Keywords

Navigation