Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A machine vision system for defect characterization on transparent parts with non-plane surfaces

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This contribution presents a machine vision system capable of revealing, detecting and characterizing defects on non-plane transparent surfaces. Because in this kind of surface, transparent and opaque defects can be found, special lighting conditions are required. Therefore, the cornerstone of this machine vision is the innovative lighting system developed. Thanks to this, the defect segmentation is straightforward and with a very low computational burden, allowing real-time inspection. To aid in the conception of the imaging conditions, the lighting system is completely described and also compared with other commercial lighting systems. In addition, for the defect segmentation, a new adaptive threshold selection algorithm is proposed. Finally, the system performance is assessed by conducting a series of tests using a commercial model of headlamp lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluze D., Merienne F., Dumont C., Gorria P.: Vision system for defect imaging, detection, and characterization on a specular surface of a 3D object. Image Vision Comput. 20, 569–580 (2002)

    Article  Google Scholar 

  2. Caulier, Y., Bourennane, S.: An image content description technique for the inspection of specular objects. EURASIP J. Adv. Signal Process. (195263) (2008)

  3. Chan F.: Reflective fringe pattern technique for subsurface crack detection. NDTE Int. 41, 602–610 (2008)

    Article  Google Scholar 

  4. Chiu S.N., Perng M.H.: Reflection-area-based feature descriptor for solder joint inspection. Mach. Vision Appl. 18(2), 95–106 (2007)

    Article  Google Scholar 

  5. Coulot, C., Kohler-hemmerlin, S., Dumont, C., Aluze, D., Lamalle, B.: Simulations of lighting for an optimal defect detection by artificial vision. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 117–122 (1997)

  6. Dalla Valle M., Gallina P., Gasparetto A.: Mirror synthesis in a mechatronic system for superficial defect detection. IEEE/ASME Trans. Mechatron. 8(3), 309–317 (2003)

    Article  Google Scholar 

  7. Forsyth D., Ponce J.: Computer Vision: A Modern Approach. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  8. Gámez García J., Gómez Ortega J., Sánchez García A., Satorres Martínez S.: Robotic software architecture for multisensor fusion system. IEEE Trans. Ind. Electron. 56(3), 766–777 (2009)

    Article  Google Scholar 

  9. Gonzalez R., Woods R., Eddins S.: Digital Image Processing Using Matlab. Prentice Hall, New Jersey (2003)

    Google Scholar 

  10. Guo, H., Tao, T.: Specular surface measurement by using a moving diffuse structured light source. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 6834(68343E) (2007)

  11. Heredia Ortiz M., Patterson E.A.: Location and shape measurement using a portable fringe projection system. Exp. Mech. 45(3), 197–204 (2005)

    Article  Google Scholar 

  12. Jahr I.: Lighting in Machine Vision. Handbook of Machine Vision. Wiley, Hornberg (2008)

    Google Scholar 

  13. Kutulakos K.: A theory of refractive and specular 3d shape by light-path triangulation. Int. J. Comput. Vis. 76, 13–29 (2008)

    Article  Google Scholar 

  14. Leopold J., Gnther H., Leopold R.: New developments in fast 3D-surface quality control. Measurement 33, 179–187 (2003)

    Article  Google Scholar 

  15. Malamas E., Petrakis E., Zervakis M., Petit L., Legat J.D.: A survey on industrial vision systems, applications and tools. Image Vis. Comput. 21, 171–188 (2003)

    Article  Google Scholar 

  16. Nayar S., Sanderson A., Weiss L., Simon D.: Specular surface inspection using structured highlight and gaussian images. IEEE Trans. Robot. Autom. 6(2), 208–218 (1990)

    Article  Google Scholar 

  17. Newman T., Jain A.: A survey of automated visual inspection. Comput. Vis. Image Underst. 61, 231–262 (1995)

    Article  Google Scholar 

  18. Ng H.F.: Automatic thresholding for defect detection. Pattern Recognit. Lett. 27, 1644–1649 (2006)

    Article  Google Scholar 

  19. Omnexus: Plastic and elastomers solutions. http://www.omnexus.com/tc/polycarbonate/ (2009)

  20. Puente Len F., Kammel S.: Inspection of specular and painted surfaces with centralized fusion techniques. Measurement 39, 536–546 (2006)

    Article  Google Scholar 

  21. Rosati G., Boschetti G., Biondi A., Rossi A.: Real-time defect detection on highly reflective curved surfaces. Optics Lasers Eng. 47, 379–384 (2009)

    Article  Google Scholar 

  22. Russ J.: The Image Processing Handbook, 5th edn. Taylor and Francis, London (2007)

    MATH  Google Scholar 

  23. Satorres Martínez, S., Gómez Ortega, J.: Sensor planning for cars headlamps inspection using expert knowledge. In: IFAC Workshop on Intelligent Manufacturing Systems, pp. 190–195 (2007)

  24. Satorres Martínez, S., Gómez Ortega, J., Gámez García, J., Sánchez García, A.: An automatic procedure to code the inspection guideline for vehicle headlamp lenses. In: IEEE International Conference on Mechatronic (2009)

  25. Satorres Martínez, S., Gómez Ortega, J., Gámez García, J., Sánchez García, A.: A dynamic lighting system for automated visual inspection of headlamp lenses. In: 14th IEEE International Conference on Emerging Techonologies and Factory Automation (2009)

  26. Satorres Martínez, S., Gómez Ortega, J., Gámez García, J., Sánchez García, A.: A fuzzy k-means based inspection system for automated defect detection in vehicle headlamp lenses. In: Eurofuse Workshop Preference Modelling and Decision Analysis (2009)

  27. Satorres Martínez S., Gómez Ortega J., Gámez García J., Sánchez García A.: A sensor planning system for automated headlamp lens inspection. Expert Syst. Appl. 36(5), 8768–8777 (2009)

    Article  Google Scholar 

  28. Seulin, R.: Conception et optimisation par simulation d’un systme de vision artificielle pour l’inspection de surfaces parfaitement spculaires. Ph.D. dissertation, Universit de Bourgogne (2002)

  29. Seulin R., Merienne F., Gorria P.: Dynamic lighting system for specular surface inspection. Mach. Vis. Appl. Ind. Insp. IX 4301, 199–206 (2001)

    Google Scholar 

  30. Seulin R., Merienne F., Gorria P.: Simulation of specular surface imaging based on computer graphics: Application on a vision inspection system. EURASIP J. Appl. Signal Process. 7, 649–658 (2002)

    Google Scholar 

  31. Sezgin M., Sankur B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)

    Article  Google Scholar 

  32. Tarini M., Lensch H., Goesele M., Seidel H.P.: 3D acquisition of mirroring objects using striped patterns. Graph. Models 67(4), 233–259 (2005)

    Article  Google Scholar 

  33. Telljohann A.: Introduction to Building a Machine Vision Inspection. Handbook of Machine Vision. Wiley, A. Hornberg (2008)

    Google Scholar 

  34. Tian G., Lu R., Gledhill D.: Surface measurement using active vision and light scattering. Optics Lasers Eng. 45, 131–139 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Satorres Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satorres Martínez, S., Gómez Ortega, J., Gámez García, J. et al. A machine vision system for defect characterization on transparent parts with non-plane surfaces. Machine Vision and Applications 23, 1–13 (2012). https://doi.org/10.1007/s00138-010-0281-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-010-0281-0

Keywords

Navigation